A244377 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^15 is prime.
2, 3, 15, 26, 30, 42, 63, 77, 107, 114, 123, 131, 143, 149, 173, 177, 212, 288, 297, 308, 309, 348, 411, 474, 548, 551, 600, 659, 681, 701, 705, 711, 770, 780, 788, 833, 840, 894, 927, 1011, 1016, 1059, 1064, 1082, 1092, 1104, 1178, 1239, 1290, 1400, 1422
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1100
Crossrefs
Cf. similar sequences listed in A244376.
Programs
-
Magma
[n: n in [0..1500] | IsPrime(s) where s is 1+&+[n^i: i in [1..15 by 2]]];
-
Mathematica
Select[Range[5000], PrimeQ[Total[#^Range[1, 15, 2]] + 1]&]
-
Sage
i,n = var('i,n') [n for n in (1..2000) if is_prime(1+(n^(2*i+1)).sum(i,0,7))] # Bruno Berselli, Jun 27 2014