cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244407 Number of unlabeled rooted trees with 2n nodes and maximal outdegree (branching factor) n.

Original entry on oeis.org

1, 2, 6, 17, 50, 143, 416, 1199, 3474, 10049, 29119, 84377, 244748, 710199, 2062274, 5991418, 17416401, 50652248, 147384676, 429043390, 1249508947, 3640449679, 10610613552, 30937605076, 90237313083, 263288153074, 768449666117, 2243530461067, 6552016136667
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 27 2014

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> b(2*n-1$2, n$2)-b(2*n-1$2, n-1$2):
    seq(a(n), n=1..30);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := b[2*n - 1, 2 n - 1, n, n] - b[2*n - 1, 2 n - 1, n - 1, n - 1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 06 2015, after Maple *)

Formula

a(n) = A244372(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 2.955765285651994974714817524... is the Otter's rooted tree constant (see A051491), and c = 0.9495793... . - Vaclav Kotesovec, Jul 11 2014