A244415 Exponent of 4 appearing in the 4-adic value of 1/n, n >= 1, given in A240226(n).
0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1
Offset: 1
Examples
n = 2: A006519(2) = 1, 2 divides 4^1, hence f(1/2) = 1 = a(2). n = 4: A006519(4) = 2^2, 4 divides 4^1, hence f(1/4) = 1 = a(4). n = 8: A006519(8) = 2^3, 8 does not divide 4^1 but 4^2, hence f(1/8) = 2 = a(8).
References
- Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
Array[IntegerExponent[2 #, 4] &, 105] (* Michael De Vlieger, Nov 06 2018 *)
-
PARI
a(n) = valuation(2*n, 4); \\ Andrew Howroyd, Jul 31 2018
-
Python
def A244415(n): return (~n&n-1).bit_length()+1>>1 # Chai Wah Wu, Jul 09 2023
Formula
a(n) = 0 if n is odd, and if n is even a(n) = f(1/n) with f(1/n) the smallest positive integer such that the highest power of 2 in n (that is A006519(n)) divides 4^f(1/n).
a(n) = valuation(2*n, 4). - Andrew Howroyd, Jul 31 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2/3. - Amiram Eldar, Jun 30 2023
Comments