cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A054705 Number of powers of 4 modulo n.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 3, 3, 3, 5, 2, 6, 4, 2, 3, 4, 4, 9, 3, 3, 6, 11, 3, 10, 7, 9, 4, 14, 3, 5, 4, 5, 5, 6, 4, 18, 10, 6, 4, 10, 4, 7, 6, 6, 12, 23, 3, 21, 11, 4, 7, 26, 10, 10, 5, 9, 15, 29, 3, 30, 6, 3, 4, 6, 6, 33, 5, 11, 7, 35, 5, 9, 19, 10, 10, 15, 7, 39, 4, 27, 11, 41, 4, 4, 8, 14, 7, 11
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A054703 (base 2), A054704 (3), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := IntegerExponent[2*n, 4] + MultiplicativeOrder[4, n/2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = A007735(n) + A244415(n). - Amiram Eldar, Aug 25 2024

A244417 Exponents of 6 in appearing in the 6-adic value of 1/n, n>=1 (A244416).

Original entry on oeis.org

0, 1, 1, 2, 0, 1, 0, 3, 2, 1, 0, 2, 0, 1, 1, 4, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 3, 2, 0, 1, 0, 5, 1, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 4, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 0, 2, 0, 1, 2, 6, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 1, 0, 4, 4, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 5, 0, 1, 2, 2
Offset: 1

Views

Author

Wolfdieter Lang, Jul 02 2014

Keywords

Comments

For the definition of 'g-dic value of 1/n' see a comment on A244416. In the Mahler reference, p. 7, the present exponent of 6 is there called f = f(1/n) for g = 6.

Examples

			See A244416.
		

References

  • Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.

Crossrefs

Cf. A122841, A244416, A007814 (g=2), A007949 (g=3), A244415 (g=4), A112765 (g=5), A051903, A065331.
Cf. also A322026, A322316.

Programs

  • Mathematica
    a[n_] := Max[IntegerExponent[n, {2, 3}]]; Array[a, 100] (* Amiram Eldar, Aug 19 2024 *)
  • PARI
    A244417(n) = max(valuation(n,2), valuation(n,3)); \\ Antti Karttunen, Dec 04 2018

Formula

a(n) = 0 if n is congruent 1 or 5 (mod 6). a(n) = max(A007814(n), A007949(n)) if n == 0 (mod 6). a(n) = A007814(n) if n == 2 or 4 (mod 6) and a(n) = A007949(n) if n == 3 (mod 6).
a(n) = max(A007814(n), A007949(n)), in all cases. - Antti Karttunen, Dec 04 2018
From Amiram Eldar, Aug 19 2024: (Start)
a(n) = A051903(A065331(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 13/10. (End)

A240226 4-adic value of 1/n, n >= 1.

Original entry on oeis.org

1, 4, 1, 4, 1, 4, 1, 16, 1, 4, 1, 4, 1, 4, 1, 16, 1, 4, 1, 4, 1, 4, 1, 16, 1, 4, 1, 4, 1, 4, 1, 64, 1, 4, 1, 4, 1, 4, 1, 16, 1, 4, 1, 4, 1, 4, 1, 16, 1, 4, 1, 4, 1, 4, 1, 16, 1, 4, 1, 4, 1, 4, 1, 64, 1, 4, 1, 4, 1, 4, 1, 16, 1, 4, 1, 4, 1, 4, 1, 16, 1, 4, 1, 4, 1, 4, 1, 16, 1, 4
Offset: 1

Views

Author

Wolfdieter Lang, Jun 28 2014

Keywords

Comments

For the definition of g-adic value of x, called |x|_g with g an integer >= 2, see the Mahler reference, p. 7. Sometimes also called g-adic absolute value of x. If g is not a prime then this is called a non-archimedean pseudo-valuation. See Mahler, p. 10.

Examples

			n = 2: A006519(2) = 1, 2 divides 4^1, hence f(1/2) = 1 and a(2) = 4^1 = 4.
n = 4: A006519(4) = 2^2, 4 divides 4^1, hence f(1/4) = 1 and a(4) = 4.
n = 8: A006519(8) = 2^3, 8 does not divide 4^1 but 4^2, hence f(1/8) = 2 and a(8) = 4^2 = 16.
		

References

  • Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.

Crossrefs

Cf. A001620, A006519, A038500 (3-adic value of 1/n), A244415.

Programs

Formula

a(n) = 1 if n is odd. a(n) = 4^f(1/n) if n is even, where f(1/n) is the smallest positive integer such that the highest power of 2 in n (that is A006519(n)) divides 4^f(1/n). The f(1/n) values are given in A244415(n).
From Andrew Howroyd, Jul 31 2018: (Start)
a(n) = 4^valuation(2*n, 4) = 4^A244415(n).
Multiplicative with a(2^e) = 4^ceiling(e/2), a(p^e) = 1 for odd prime p. (End)
From Amiram Eldar, Oct 24 2023: (Start)
Dirichlet g.f.: zeta(s)*(2^s-1)*(2^s+4)/(4^s-4).
Sum_{k=1..n} a(k) ~ (3/(4*log(2))) * n * (log(n) + gamma + 4*log(2)/3 - 1), where gamma is Euler's constant (A001620). (End)

A363228 Exponent of 4 in 9^n - 1.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2
Offset: 1

Views

Author

Ruud H.G. van Tol, May 21 2023

Keywords

Comments

Not the same as A147648-without-zeros.

Crossrefs

Programs

  • Mathematica
    a[n_] := IntegerExponent[2*n, 4] + 1; Array[a, 100] (* Amiram Eldar, May 22 2023 *)
  • PARI
    a(n) = valuation(2*n, 4) + 1;
    
  • Python
    def A363228(n): return (~n&n-1).bit_length()+3>>1 # Chai Wah Wu, Jul 09 2023

Formula

a(n) = floor(A090739(n)/2).
a(n) = A244415(n) + 1.
a(n) = A235127(A024101(n)). - Michel Marcus, May 21 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/3. - Amiram Eldar, Jul 13 2023
Conjecture: a(n) = A235127(A000045(6*n)), all other 4-adic 6-sections A235127(A000045(.))=0. - R. J. Mathar, Jun 28 2025
Showing 1-4 of 4 results.