A244443 Smallest integer m > 1 such that m!^(m + n) divides (m^2)!.
2, 6, 15, 77, 185, 187, 475, 3820, 4043, 4090, 11231, 30589, 57023, 126815, 131055, 983032, 983033, 2617339, 4046839, 11534206, 11534207, 65011702, 66777087, 368279551, 469745405, 973061887, 1064828671
Offset: 1
Examples
a(4) = 77 because 77!^(77 + 4) divides (77^2)! and 77 is the smallest integer m, m > 1, with this property.
Programs
-
PARI
for(n=1, 7, m=2; while((m^2)!%(m!^(m+n)), m++); print1(m", ")) \\ Jens Kruse Andersen, Aug 31 2014
-
PARI
n=f=1; for(m=2, 5000, f*=m; s=m^2; forprime(p=2, m, e=0; b=p; while(b<=s, e+=s\b; b*=p); if(valuation(f,p)*(m+n)>e, next(2))); print1(m", "); n++) \\ Faster program. Jens Kruse Andersen, Aug 31 2014
Extensions
a(9)-a(13) from Jens Kruse Andersen, Aug 31 2014
a(14)-a(27) from Hiroaki Yamanouchi, Sep 29 2014
Comments