A244447 a(n) is the smallest integer m such that m-n is composite and phi(m+n) + sigma(m-n) = 2*m.
11, 8, 13, 37350, 25, 18, 28, 20, 61, 22, 44, 40, 52, 250, 39, 60, 68, 60, 58, 76, 168, 46, 92, 69, 2040, 56, 126, 84, 114, 140, 88, 74, 108, 90, 288, 92, 148, 108, 283, 324, 164, 180, 100, 40878, 125, 474, 162, 108, 773, 71, 111, 240, 168, 315, 148, 194, 564, 390, 128, 144, 124, 164, 153, 279, 1008, 162, 102, 152, 432, 222
Offset: 1
Keywords
Examples
a(1)=11 because 11-1 is composite, phi(11+1)+sigma(11-1)=2*11 and there is no such number less than 11.
Programs
-
Mathematica
a[n_]:=(For[m=n+1,PrimeQ[m-n]||EulerPhi[m+n]+DivisorSigma[1,m-n]!=2m,m++];m);Table[a[n],{n,70}]
-
PARI
a(n)=m=n+4;while(isprime(m-n)||eulerphi(m+n)+sigma(m-n)!=2*m,m++);m vector(100,n,a(n)) \\ Derek Orr, Aug 30 2014
Comments