cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A244454 Number T(n,k) of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 7, 1, 0, 1, 0, 17, 2, 0, 0, 1, 0, 42, 4, 1, 0, 0, 1, 0, 105, 7, 2, 0, 0, 0, 1, 0, 267, 15, 2, 1, 0, 0, 0, 1, 0, 684, 28, 4, 2, 0, 0, 0, 0, 1, 0, 1775, 56, 7, 2, 1, 0, 0, 0, 0, 1, 0, 4639, 110, 12, 2, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 28 2014

Keywords

Comments

T(1,0) = 1 by convention.
Sum_{i=2..n-1} T(n,i) = A001678(n+1) for n>1.

Examples

			The A000081(5) = 9 rooted trees with 5 nodes sorted by minimal outdegree of inner nodes are:
: o   o     o     o     o     o     o   :     o   :    o    :
: |   |     |    / \   / \    |    /|\  :    / \  :  /( )\  :
: o   o     o   o   o o   o   o   o o o :   o   o : o o o o :
: |   |    / \  |     |   |  /|\  |     :  / \    :         :
: o   o   o   o o     o   o o o o o     : o   o   :         :
: |  / \  |     |                       :         :         :
: o o   o o     o                       :         :         :
: |                                     :         :         :
: o                                     :         :         :
:                                       :         :         :
: ------------------1------------------ : ---2--- : ---4--- :
Thus row 5 = [0, 7, 1, 0, 1].
Triangle T(n,k) begins:
  1;
  0,    1;
  0,    1,   1;
  0,    3,   0,  1;
  0,    7,   1,  0, 1;
  0,   17,   2,  0, 0, 1;
  0,   42,   4,  1, 0, 0, 1;
  0,  105,   7,  2, 0, 0, 0, 1;
  0,  267,  15,  2, 1, 0, 0, 0, 1;
  0,  684,  28,  4, 2, 0, 0, 0, 0, 1;
  0, 1775,  56,  7, 2, 1, 0, 0, 0, 0, 1;
  0, 4639, 110, 12, 2, 2, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A000081.
Cf. A001678, A244372, A244530 (ordered unlabeled rooted trees).

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
          1, 0), `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
          b(n-i*j, i-1, max(0, t-j), k), j=0..n/i)))
        end:
    T:= (n, k)-> b(n-1$2, k$2) -`if`(n=1 and k=0, 0, b(n-1$2, k+1$2)):
    seq(seq(T(n, k), k=0..n-1), n=1..14);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]* b[n-i*j, i-1, Max[0, t-j], k], {j, 0, n/i}]]]; T[n_, k_] := b[n-1, n-1, k, k] - If[n == 1 && k == 0, 0, b[n-1, n-1, k+1, k+1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 08 2015, translated from Maple *)

A244539 Number of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 10.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 21, 22, 23, 24, 25, 26, 27, 28, 29, 175, 496, 1024, 1617, 2278, 3010, 3816, 4699, 5662, 6708, 10310, 19721, 39074, 73487, 125862, 199365, 297436, 423799, 582472, 777777, 1060410, 1547051, 2443649, 4072732, 6905106, 11528110
Offset: 11

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 29 2014

Keywords

Crossrefs

Column k=10 of A244530.
Cf. A244464.

Programs

  • Maple
    b:= proc(n, t, k) option remember; `if`(n=0,
          `if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)*
           b(n-j, max(0, t-1), k), j=1..n)))
        end:
    a:= n-> b(n-1, 10$2) -b(n-1, 11$2):
    seq(a(n), n=11..60);
Showing 1-2 of 2 results.