A244372
Number T(n,k) of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 2, 1, 0, 1, 10, 6, 2, 1, 0, 1, 22, 16, 6, 2, 1, 0, 1, 45, 43, 17, 6, 2, 1, 0, 1, 97, 113, 49, 17, 6, 2, 1, 0, 1, 206, 300, 136, 50, 17, 6, 2, 1, 0, 1, 450, 787, 386, 142, 50, 17, 6, 2, 1, 0, 1, 982, 2074, 1081, 409, 143, 50, 17, 6, 2, 1
Offset: 1
The A000081(5) = 9 rooted trees with 5 nodes sorted by maximal outdegree are:
: o : o o o o o : o o : o :
: | : | | / \ / \ / \ : | /|\ : /( )\ :
: o : o o o o o o o o : o o o o : o o o o :
: | : | / \ | / \ | | : /|\ | : :
: o : o o o o o o o o : o o o o : :
: | : / \ | | : : :
: o : o o o o : : :
: | : : : :
: o : : : :
: : : : :
: -1- : ---------------2--------------- : -----3----- : ---4--- :
Thus row 5 = [0, 1, 5, 2, 1].
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 5, 2, 1;
0, 1, 10, 6, 2, 1;
0, 1, 22, 16, 6, 2, 1;
0, 1, 45, 43, 17, 6, 2, 1;
0, 1, 97, 113, 49, 17, 6, 2, 1;
0, 1, 206, 300, 136, 50, 17, 6, 2, 1;
0, 1, 450, 787, 386, 142, 50, 17, 6, 2, 1;
0, 1, 982, 2074, 1081, 409, 143, 50, 17, 6, 2, 1;
-
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
end:
T:= (n, k)-> b(n-1$2, k$2) -`if`(k=0, 0, b(n-1$2, k-1$2)):
seq(seq(T(n, k), k=0..n-1), n=1..14);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]]; T[n_, k_] := b[n-1, n-1, k, k] - If[k == 0, 0, b[n-1, n-1, k-1, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 01 2014, translated from Maple *)
A244530
Number T(n,k) of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 2, 0, 1, 0, 36, 5, 0, 0, 1, 0, 117, 11, 3, 0, 0, 1, 0, 393, 28, 7, 0, 0, 0, 1, 0, 1339, 78, 8, 4, 0, 0, 0, 1, 0, 4630, 201, 21, 9, 0, 0, 0, 0, 1, 0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1, 0, 57201, 1441, 121, 11, 11, 0, 0, 0, 0, 0, 1
Offset: 1
T(5,1) = 11:
o o o o o o o o o o o
| | | | / \ / \ / \ | /|\ /|\ /|\
o o o o o o o o o o o o o o o o o o o o
| | / \ / \ | | | | /|\ | | |
o o o o o o o o o o o o o o o o
| / \ | | | |
o o o o o o o
|
o
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 1;
0, 11, 2, 0, 1;
0, 36, 5, 0, 0, 1;
0, 117, 11, 3, 0, 0, 1;
0, 393, 28, 7, 0, 0, 0, 1;
0, 1339, 78, 8, 4, 0, 0, 0, 1;
0, 4630, 201, 21, 9, 0, 0, 0, 0, 1;
0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1;
Columns k=0-10 give:
A063524,
A106640(n-2),
A244531,
A244532,
A244533,
A244534,
A244535,
A244536,
A244537,
A244538,
A244539.
Cf.
A244454 (unordered unlabeled rooted trees).
-
b:= proc(n, t, k) option remember; `if`(n=0,
`if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)*
b(n-j, max(0, t-1), k), j=1..n)))
end:
T:= (n, k)-> b(n-1, k$2) -`if`(n=1 and k=0, 0, b(n-1, k+1$2)):
seq(seq(T(n, k), k=0..n-1), n=1..14);
-
b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t>n, 0, Sum[b[j-1, k, k]*b[n-j, Max[0, t-1], k], {j, 1, n}]]]; T[n_, k_] := b[n-1, k, k] - If[n == 1 && k == 0, 0, b[n-1, k+1, k+1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 13 2015, translated from Maple *)
A244456
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 2.
Original entry on oeis.org
1, 0, 1, 2, 4, 7, 15, 28, 56, 110, 220, 436, 878, 1762, 3560, 7205, 14650, 29838, 60991, 124938, 256628, 528238, 1089834, 2252860, 4666304, 9682422, 20125777, 41900433, 87369029, 182441944, 381499040, 798782945, 1674575394, 3514733683, 7385298837, 15534856067
Offset: 3
a(5) = 1:
o
/ \
o o
/ \
o o
-
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 2$2) -b(n-1$2, 3$2):
seq(a(n), n=3..40);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]]]; a[n_] := b[n - 1, n - 1, 2, 2] - b[n - 1, n - 1, 3, 3] // FullSimplify; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
A244455
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 1.
Original entry on oeis.org
1, 1, 3, 7, 17, 42, 105, 267, 684, 1775, 4639, 12238, 32491, 86859, 233496, 631082, 1713613, 4673455, 12795426, 35159212, 96927479, 268021520, 743188706, 2066071045, 5757360011, 16079027344, 44997313684, 126166307275, 354384737204, 997083779801, 2809751278062
Offset: 2
a(5) = 7:
o o o o o o o
| | | / \ / \ | /|\
o o o o o o o o o o o
| | / \ | | | /|\ |
o o o o o o o o o o o
| / \ | |
o o o o o
|
o
Cf.
A106640 (the same for ordered rooted trees).
-
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 1$2) -b(n-1$2, 2$2):
seq(a(n), n=2..35);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 1, 1] - b[n - 1, n - 1, 2, 2]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
A244457
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 3.
Original entry on oeis.org
1, 0, 0, 1, 2, 2, 4, 7, 12, 20, 34, 56, 98, 167, 284, 484, 835, 1433, 2467, 4250, 7345, 12700, 22004, 38154, 66266, 115224, 200623, 349654, 610126, 1065739, 1863547, 3261672, 5714277, 10020092, 17586014, 30890654, 54305289, 95542387, 168221056, 296401979
Offset: 4
a(7) = 1:
o
/|\
o o o
/|\
o o o
-
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 3$2) -b(n-1$2, 4$2):
seq(a(n), n=4..45);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 3, 3] - b[n - 1, n - 1, 4, 4]; Table[a[n], {n, 4, 45}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
A244458
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 4.
Original entry on oeis.org
1, 0, 0, 0, 1, 2, 2, 2, 4, 7, 12, 16, 25, 38, 61, 94, 147, 227, 356, 550, 862, 1345, 2113, 3299, 5168, 8091, 12721, 19981, 31421, 49384, 77761, 122487, 193151, 304623, 480852, 759367, 1200150, 1897594, 3002329, 4752436, 7527155, 11927290, 18909719, 29993579
Offset: 5
a(9) = 1:
o
/ ( ) \
o o o o
/( )\
o o o o
-
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 4$2) -b(n-1$2, 5$2):
seq(a(n), n=5..50);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 4, 4] - b[n - 1, n - 1, 5, 5]; Table[a[n], {n, 5, 50}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
A244459
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 2, 2, 2, 2, 4, 7, 12, 16, 21, 29, 43, 65, 99, 142, 206, 297, 436, 641, 945, 1383, 2029, 2976, 4378, 6432, 9464, 13913, 20495, 30205, 44547, 65670, 96846, 142857, 210941, 311636, 460613, 680848, 1006682, 1488915, 2203324, 3261840, 4830671
Offset: 6
-
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 5$2) -b(n-1$2, 6$2):
seq(a(n), n=6..55);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 5, 5] - b[n - 1, n - 1, 6, 6]; Table[a[n], {n, 6, 55}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
A244460
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 6.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 4, 7, 12, 16, 21, 25, 34, 47, 70, 103, 147, 201, 276, 377, 527, 743, 1057, 1486, 2088, 2911, 4073, 5704, 8027, 11290, 15897, 22340, 31411, 44159, 62165, 87516, 123296, 173642, 244636, 344684, 485976, 685362, 966971, 1364301
Offset: 7
-
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 6$2) -b(n-1$2, 7$2):
seq(a(n), n=7..60);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 6, 6] - b[n - 1, n - 1, 7, 7]; Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
A244461
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 7.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 4, 7, 12, 16, 21, 25, 30, 38, 52, 74, 108, 151, 206, 271, 356, 468, 629, 855, 1180, 1620, 2212, 2991, 4030, 5420, 7320, 9922, 13508, 18396, 25049, 34032, 46194, 62653, 85051, 115548, 157168, 213852, 291046, 395990
Offset: 8
-
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 7$2) -b(n-1$2, 8$2):
seq(a(n), n=8..65);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 7, 7] - b[n - 1, n - 1, 8, 8]; Table[a[n], {n, 8, 65}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
A244462
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 8.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 4, 7, 12, 16, 21, 25, 30, 34, 43, 56, 79, 112, 156, 210, 276, 351, 447, 570, 741, 978, 1314, 1764, 2367, 3137, 4131, 5398, 7058, 9236, 12161, 16077, 21340, 28326, 37573, 49696, 65623, 86526, 114122, 150624
Offset: 9
-
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 8$2) -b(n-1$2, 9$2):
seq(a(n), n=9..70);
Showing 1-10 of 12 results.
Comments