A244490 Triangle read by rows: T(n,k) (0 <= k <= n) = Sum_{i=0..[k/2]} (-1)^i*binomial(k,2*i)*(2*i-1)!!*n^(k-2*i).
1, 1, 1, 1, 2, 3, 1, 3, 8, 18, 1, 4, 15, 52, 163, 1, 5, 24, 110, 478, 1950, 1, 6, 35, 198, 1083, 5706, 28821, 1, 7, 48, 322, 2110, 13482, 83824, 505876, 1, 8, 63, 488, 3715, 27768, 203569, 1461944, 10270569, 1, 9, 80, 702, 6078, 51894, 436656, 3618540, 29510268, 236644092, 1, 10, 99, 970, 9403, 90150, 854485, 8003950, 74058105, 676549450, 6098971555
Offset: 0
Examples
Triangle begins: 1 1 1 1 2 3 1 3 8 18 1 4 15 52 163 1 5 24 110 478 1950 1 6 35 198 1083 5706 28821 1 7 48 322 2110 13482 83824 505876 1 8 63 488 3715 27768 203569 1461944 10270569 1 9 80 702 6078 51894 436656 3618540 29510268 236644092 ...
Links
- J. East, R. D. Gray, Idempotent generators in finite partition monoids and related semigroups, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
Crossrefs
Programs
-
Maple
T := (n,k) -> add((-1)^i*binomial(k,2*i)*doublefactorial(2*i-1)*n^(k-2*i), i=0..k/2): seq(seq(T(n,k), k=0..n), n=0..10); # Peter Luschny, Oct 05 2016
-
Mathematica
Table[Simplify[2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2016 *)
-
Sage
def T(n, k): @cached_function def h(n, x): if n == 0: return 1 if n == 1: return 2*x return 2*(x*h(n-1,x)-(n-1)*h(n-2,x)) return h(k, n/sqrt(2))/2^(k/2) for n in range(10): print([T(n,k) for k in (0..n)]) # Peter Luschny, Oct 05 2016
Formula
From Peter Luschny, Oct 05 2016: (Start)
T(n,k) = 2^(-k/2)*HermiteH(k, n/sqrt(2)).
T(n,k) = 2^((k-1)/2)*n*KummerU((1-k)/2, 3/2, n^2/2) for n>=1.
T(n,k) = n^k*hypergeom([-k/2, (1-k)/2], [], -2/n^2) for n>=1. (End)
Comments