cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244490 Triangle read by rows: T(n,k) (0 <= k <= n) = Sum_{i=0..[k/2]} (-1)^i*binomial(k,2*i)*(2*i-1)!!*n^(k-2*i).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 8, 18, 1, 4, 15, 52, 163, 1, 5, 24, 110, 478, 1950, 1, 6, 35, 198, 1083, 5706, 28821, 1, 7, 48, 322, 2110, 13482, 83824, 505876, 1, 8, 63, 488, 3715, 27768, 203569, 1461944, 10270569, 1, 9, 80, 702, 6078, 51894, 436656, 3618540, 29510268, 236644092, 1, 10, 99, 970, 9403, 90150, 854485, 8003950, 74058105, 676549450, 6098971555
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2014

Keywords

Comments

East and Gray (p. 24) give a combinatorial interpretation of the numbers: A function f: Y -> X with Y <= X (<= inclusion) has a 2-cycle if there exists x, y in Y with x != y, f(x) = y and f(y) = x. Then T(n,k) = card({f : [k] -> [n]: f has no 2-cycles}). For instance T(3,3) = 18 because there are 27 functions [3] -> [3], 9 of which have a 2-cycle. - Peter Luschny, Oct 05 2016

Examples

			Triangle begins:
1
1 1
1 2 3
1 3 8 18
1 4 15 52 163
1 5 24 110 478 1950
1 6 35 198 1083 5706 28821
1 7 48 322 2110 13482 83824 505876
1 8 63 488 3715 27768 203569 1461944 10270569
1 9 80 702 6078 51894 436656 3618540 29510268 236644092
...
		

Crossrefs

As has been noticed by Tom Copeland: T(n,0) = A000012(n), T(n,1) = A001477(n) for n>=1, T(n,2) = A067998(n+1) for n>=3, T(n,3) = A121670(n) for n>=3.
Cf. A276999.

Programs

  • Maple
    T := (n,k) -> add((-1)^i*binomial(k,2*i)*doublefactorial(2*i-1)*n^(k-2*i), i=0..k/2):
    seq(seq(T(n,k), k=0..n), n=0..10); # Peter Luschny, Oct 05 2016
  • Mathematica
    Table[Simplify[2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2016 *)
  • Sage
    def T(n, k):
        @cached_function
        def h(n, x):
            if n == 0: return 1
            if n == 1: return 2*x
            return 2*(x*h(n-1,x)-(n-1)*h(n-2,x))
        return h(k, n/sqrt(2))/2^(k/2)
    for n in range(10):
        print([T(n,k) for k in (0..n)]) # Peter Luschny, Oct 05 2016

Formula

From Peter Luschny, Oct 05 2016: (Start)
T(n,k) = 2^(-k/2)*HermiteH(k, n/sqrt(2)).
T(n,k) = 2^((k-1)/2)*n*KummerU((1-k)/2, 3/2, n^2/2) for n>=1.
T(n,k) = n^k*hypergeom([-k/2, (1-k)/2], [], -2/n^2) for n>=1. (End)