A244497 Number of magic labelings of the prism graph I X C_5 with magic sum n.
1, 11, 57, 197, 533, 1223, 2494, 4654, 8105, 13355, 21031, 31891, 46837, 66927, 93388, 127628, 171249, 226059, 294085, 377585, 479061, 601271, 747242, 920282, 1123993, 1362283, 1639379, 1959839, 2328565, 2750815, 3232216, 3778776, 4396897, 5093387, 5875473, 6750813, 7727509, 8814119
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
- Index entries for linear recurrences with constant coefficients, signature (5,-9,5,5,-9,5,-1).
Crossrefs
Programs
-
Maple
A244497:=n->(3*(63+(-1)^n) + 576*n + 720*n^2 + 460*n^3 + 150*n^4 + 20*n^5) / 192: seq(A244497(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
-
Mathematica
CoefficientList[Series[(1 + 6 x + 11 x^2 + 6 x^3 + x^4)/((1 - x)^6*(1 + x)), {x, 0, 37}], x] (* Michael De Vlieger, Sep 15 2017 *) LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,11,57,197,533,1223,2494},40] (* Harvey P. Dale, Aug 04 2021 *)
-
PARI
Vec((1+6*x+11*x^2+6*x^3+x^4) / ((1-x)^6*(1+x)) + O(x^40)) \\ Colin Barker, Jan 13 2017
Formula
G.f.: (1 + 6*x + 11*x^2 + 6*x^3 + x^4) / ((1 - x)^6*(1 + x)).
From Colin Barker, Jan 13 2017: (Start)
a(n) = (3*(63+(-1)^n) + 576*n + 720*n^2 + 460*n^3 + 150*n^4 + 20*n^5) / 192.
a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7) for n>6.
(End)
Comments