A244508 Number of odd prime powers (A246655) between 2^n and 2^(n+1).
0, 1, 2, 3, 7, 8, 16, 25, 46, 80, 141, 263, 473, 882, 1628, 3044, 5734, 10779, 20428, 38687, 73653, 140425, 268340, 513866, 986033, 1894409, 3646134, 7027825, 13562625, 26208248, 50698865, 98184467, 190338061, 369326690, 717271793, 1394198586, 2712112561
Offset: 0
Keywords
Examples
Between 2 and 4, there is just 1 prime power: 3, so a(1) = 1. Between 4 and 8, there are 2 prime powers: 5 and 7, so a(2) = 2.
Links
- Ray Chandler, Table of n, a(n) for n = 0..91 (using b-file from A007053, corrected n = 45..52, n = 0..52 from Hiroaki Yamanouchi)
Programs
-
Mathematica
Table[Count[Range[2^n + 1, 2^(n + 1) - 1], ?PrimePowerQ], {n, 0, 27}] (* _Ivan N. Ianakiev, Nov 18 2014 *)
-
PARI
a(n) = sum(i=2^n+1, 2^(n+1)-1, isprimepower(i)>0);
-
Python
from sympy import primepi, integer_nthroot def A244508(n): def f(x): return int(1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(1, x.bit_length()))) return f((1<
Chai Wah Wu, Nov 05 2024
Formula
Extensions
a(28)-a(36) from Hiroaki Yamanouchi, Nov 20 2014
Minor edits by Ray Chandler, Aug 20 2021