cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A270775 a(n) is the number of invertible 2 X 2 upper triangular matrices over Z_p where p = prime(n).

Original entry on oeis.org

2, 12, 80, 252, 1100, 1872, 4352, 6156, 11132, 22736, 27900, 47952, 65600, 75852, 99452, 143312, 198476, 219600, 291852, 347900, 378432, 480636, 558092, 689216, 893952, 1010000, 1071612, 1202252, 1271376, 1417472, 2016252, 2213900, 2533952, 2647116, 3263696
Offset: 1

Views

Author

Tom Edgar, Mar 22 2016

Keywords

Comments

a(n) divides A244509(n).

Examples

			Over Z_2, there are only two invertible upper triangular 2 X 2 matrices: [[1,0],[0,1]] and [[1,1],[0,1]] so a(1) = 2.
		

Crossrefs

Programs

  • Sage
    [nth_prime(p)*(nth_prime(p)-1)^2 for p in [1..35]]

Formula

a(n) = p*(p-1)^2 where p = prime(n).
Sum 1/a(n) = A382552. - R. J. Mathar, Mar 31 2025

A262354 a(n) is the number of 2 X 2 matrices over Z_p with determinant in {1,-1} where p = prime(n).

Original entry on oeis.org

6, 48, 240, 672, 2640, 4368, 9792, 13680, 24288, 48720, 59520, 101232, 137760, 158928, 207552, 297648, 410640, 453840, 601392, 715680, 777888, 985920, 1143408, 1409760, 1825152, 2060400, 2185248, 2449872, 2589840, 2885568, 4096512, 4495920, 5142432, 5370960
Offset: 1

Views

Author

Tom Edgar, Mar 24 2016

Keywords

Comments

a(n) divides A244509(n).
For n>2 (i.e. p=prime(n)>=5), a(n) gives the order of the largest proper subgroup of GL(2,Z_p).

Crossrefs

Programs

  • Mathematica
    Prepend[2 Table[(Prime@ n + 1) Prime@ n (Prime@ n - 1), {n, 2, 34}], 6] (* Michael De Vlieger, Mar 24 2016, after Artur Jasinski at A127917 *)
  • PARI
    lista(nn) = {print1(6, ", "); forprime(p=3, nn, print1(2*p*(p^2-1), ", ")); } \\ Altug Alkan, Mar 24 2016
  • Sage
    [6] + [2*p*(p^2-1) for p in prime_range(3,150)]
    

Formula

For n>1, a(n) = 2*p*(p^2-1) where p = prime(n).
For n>1, a(n) = 2*A127917(n).
Showing 1-2 of 2 results.