A244523 Irregular triangle read by rows: T(n,k) is the number of identity trees with n nodes and maximal branching factor k.
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 5, 0, 1, 10, 1, 0, 1, 21, 3, 0, 1, 42, 9, 0, 1, 87, 25, 0, 1, 178, 66, 2, 0, 1, 371, 170, 6, 0, 1, 773, 431, 21, 0, 1, 1630, 1076, 63, 0, 1, 3447, 2665, 185, 1, 0, 1, 7346, 6560, 512, 7, 0, 1, 15712, 16067, 1403, 26, 0, 1, 33790, 39219, 3750, 91, 0, 1, 72922, 95476, 9928, 291
Offset: 1
Examples
Triangle starts: 01: 1, 02: 0, 1, 03: 0, 1, 04: 0, 1, 1, 05: 0, 1, 2, 06: 0, 1, 5, 07: 0, 1, 10, 1, 08: 0, 1, 21, 3, 09: 0, 1, 42, 9, 10: 0, 1, 87, 25, 11: 0, 1, 178, 66, 2, 12: 0, 1, 371, 170, 6, 13: 0, 1, 773, 431, 21, 14: 0, 1, 1630, 1076, 63, 15: 0, 1, 3447, 2665, 185, 1, 16: 0, 1, 7346, 6560, 512, 7, 17: 0, 1, 15712, 16067, 1403, 26, 18: 0, 1, 33790, 39219, 3750, 91, 19: 0, 1, 72922, 95476, 9928, 291, 20: 0, 1, 158020, 231970, 25969, 885, 3, 21: 0, 1, 343494, 562736, 67462, 2588, 15, 22: 0, 1, 749101, 1363640, 174039, 7373, 70, 23: 0, 1, 1638102, 3301586, 446884, 20555, 256, 24: 0, 1, 3591723, 7988916, 1142457, 56413, 884, 25: 0, 1, 7893801, 19322585, 2911078, 152812, 2840, 3, ... The A004111(7) = 12 level-sequences and the branching sequences for the identity trees with 7 nodes are (dots for zeros), together with the maximal branching factors, are: 01: [ . 1 2 3 4 5 6 ] [ 1 1 1 1 1 1 . ] 1 02: [ . 1 2 3 4 5 4 ] [ 1 1 1 2 1 . . ] 2 03: [ . 1 2 3 4 5 3 ] [ 1 1 2 1 1 . . ] 2 04: [ . 1 2 3 4 5 2 ] [ 1 2 1 1 1 . . ] 2 05: [ . 1 2 3 4 5 1 ] [ 2 1 1 1 1 . . ] 2 06: [ . 1 2 3 4 3 2 ] [ 1 2 2 1 . . . ] 2 07: [ . 1 2 3 4 3 1 ] [ 2 1 2 1 . . . ] 2 08: [ . 1 2 3 4 2 3 ] [ 1 2 1 1 . 1 . ] 2 09: [ . 1 2 3 4 2 1 ] [ 2 2 1 1 . . . ] 2 10: [ . 1 2 3 4 1 2 ] [ 2 1 1 1 . 1 . ] 2 11: [ . 1 2 3 2 1 2 ] [ 2 2 1 . . 1 . ] 2 12: [ . 1 2 3 1 2 1 ] [ 3 1 1 . 1 . . ] 3 This gives row n=7: [0, 1, 10, 1, 0, 0, ... ].
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 1..285, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(b(i-1$2, k$2), j)* b(n-i*j, i-1, t-j, k), j=0..min(t, n/i)))) end: g:= proc(n) local k; if n=1 then 0 else for k while T(n, k)>0 do od; k-1 fi end: T:= (n, k)-> b(n-1$2, k$2) -`if`(k=0, 0, b(n-1$2, k-1$2)): seq(seq(T(n, k), k=0..g(n)), n=1..25);
-
Mathematica
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k], j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]]; g[n_] := If[ n == 1 , 0, For[k=1, T[n, k]>0 , k++]; k-1]; T[n_, k_] := b[n-1, n-1, k, k] - If[k == 0, 0, b[n-1, n-1, k-1, k-1]]; Table[Table[T[n, k], {k, 0, g[n]}], {n, 1, 25}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple *)
Comments