cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244523 Irregular triangle read by rows: T(n,k) is the number of identity trees with n nodes and maximal branching factor k.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 5, 0, 1, 10, 1, 0, 1, 21, 3, 0, 1, 42, 9, 0, 1, 87, 25, 0, 1, 178, 66, 2, 0, 1, 371, 170, 6, 0, 1, 773, 431, 21, 0, 1, 1630, 1076, 63, 0, 1, 3447, 2665, 185, 1, 0, 1, 7346, 6560, 512, 7, 0, 1, 15712, 16067, 1403, 26, 0, 1, 33790, 39219, 3750, 91, 0, 1, 72922, 95476, 9928, 291
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Jul 30 2014

Keywords

Comments

Row sums give A004111.

Examples

			Triangle starts:
01:  1,
02:  0, 1,
03:  0, 1,
04:  0, 1, 1,
05:  0, 1, 2,
06:  0, 1, 5,
07:  0, 1, 10, 1,
08:  0, 1, 21, 3,
09:  0, 1, 42, 9,
10:  0, 1, 87, 25,
11:  0, 1, 178, 66, 2,
12:  0, 1, 371, 170, 6,
13:  0, 1, 773, 431, 21,
14:  0, 1, 1630, 1076, 63,
15:  0, 1, 3447, 2665, 185, 1,
16:  0, 1, 7346, 6560, 512, 7,
17:  0, 1, 15712, 16067, 1403, 26,
18:  0, 1, 33790, 39219, 3750, 91,
19:  0, 1, 72922, 95476, 9928, 291,
20:  0, 1, 158020, 231970, 25969, 885, 3,
21:  0, 1, 343494, 562736, 67462, 2588, 15,
22:  0, 1, 749101, 1363640, 174039, 7373, 70,
23:  0, 1, 1638102, 3301586, 446884, 20555, 256,
24:  0, 1, 3591723, 7988916, 1142457, 56413, 884,
25:  0, 1, 7893801, 19322585, 2911078, 152812, 2840, 3,
...
The A004111(7) = 12 level-sequences and the branching sequences for the identity trees with 7 nodes are (dots for zeros), together with the maximal branching factors, are:
01:  [ . 1 2 3 4 5 6 ]    [ 1 1 1 1 1 1 . ]   1
02:  [ . 1 2 3 4 5 4 ]    [ 1 1 1 2 1 . . ]   2
03:  [ . 1 2 3 4 5 3 ]    [ 1 1 2 1 1 . . ]   2
04:  [ . 1 2 3 4 5 2 ]    [ 1 2 1 1 1 . . ]   2
05:  [ . 1 2 3 4 5 1 ]    [ 2 1 1 1 1 . . ]   2
06:  [ . 1 2 3 4 3 2 ]    [ 1 2 2 1 . . . ]   2
07:  [ . 1 2 3 4 3 1 ]    [ 2 1 2 1 . . . ]   2
08:  [ . 1 2 3 4 2 3 ]    [ 1 2 1 1 . 1 . ]   2
09:  [ . 1 2 3 4 2 1 ]    [ 2 2 1 1 . . . ]   2
10:  [ . 1 2 3 4 1 2 ]    [ 2 1 1 1 . 1 . ]   2
11:  [ . 1 2 3 2 1 2 ]    [ 2 2 1 . . 1 . ]   2
12:  [ . 1 2 3 1 2 1 ]    [ 3 1 1 . 1 . . ]   3
This gives row n=7: [0, 1, 10, 1, 0, 0, ... ].
		

Crossrefs

Columns k=0-10 give: A000007, A000012 (for n>0), A245747, A245748, A245749, A245750, A245751, A245752, A245753, A245754, A245755.
Cf. A004111 (identity trees), A244372 (unlabeled rooted trees by outdegree).

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b(i-1$2, k$2), j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    g:= proc(n) local k; if n=1 then 0 else
           for k while T(n, k)>0 do od; k-1 fi
        end:
    T:= (n, k)-> b(n-1$2, k$2) -`if`(k=0, 0, b(n-1$2, k-1$2)):
    seq(seq(T(n, k), k=0..g(n)), n=1..25);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k], j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]]; g[n_] := If[ n == 1 , 0, For[k=1, T[n, k]>0 , k++]; k-1]; T[n_, k_] := b[n-1, n-1, k, k] - If[k == 0, 0, b[n-1, n-1, k-1, k-1]]; Table[Table[T[n, k], {k, 0, g[n]}], {n, 1, 25}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple *)