A244530 Number T(n,k) of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 2, 0, 1, 0, 36, 5, 0, 0, 1, 0, 117, 11, 3, 0, 0, 1, 0, 393, 28, 7, 0, 0, 0, 1, 0, 1339, 78, 8, 4, 0, 0, 0, 1, 0, 4630, 201, 21, 9, 0, 0, 0, 0, 1, 0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1, 0, 57201, 1441, 121, 11, 11, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
T(5,1) = 11: o o o o o o o o o o o | | | | / \ / \ / \ | /|\ /|\ /|\ o o o o o o o o o o o o o o o o o o o o | | / \ / \ | | | | /|\ | | | o o o o o o o o o o o o o o o o | / \ | | | | o o o o o o o | o Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 4, 0, 1; 0, 11, 2, 0, 1; 0, 36, 5, 0, 0, 1; 0, 117, 11, 3, 0, 0, 1; 0, 393, 28, 7, 0, 0, 0, 1; 0, 1339, 78, 8, 4, 0, 0, 0, 1; 0, 4630, 201, 21, 9, 0, 0, 0, 0, 1; 0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, t, k) option remember; `if`(n=0, `if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)* b(n-j, max(0, t-1), k), j=1..n))) end: T:= (n, k)-> b(n-1, k$2) -`if`(n=1 and k=0, 0, b(n-1, k+1$2)): seq(seq(T(n, k), k=0..n-1), n=1..14);
-
Mathematica
b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t>n, 0, Sum[b[j-1, k, k]*b[n-j, Max[0, t-1], k], {j, 1, n}]]]; T[n_, k_] := b[n-1, k, k] - If[n == 1 && k == 0, 0, b[n-1, k+1, k+1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 13 2015, translated from Maple *)
Comments