cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A244530 Number T(n,k) of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 2, 0, 1, 0, 36, 5, 0, 0, 1, 0, 117, 11, 3, 0, 0, 1, 0, 393, 28, 7, 0, 0, 0, 1, 0, 1339, 78, 8, 4, 0, 0, 0, 1, 0, 4630, 201, 21, 9, 0, 0, 0, 0, 1, 0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1, 0, 57201, 1441, 121, 11, 11, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 29 2014

Keywords

Comments

T(1,0) = 1 by convention.

Examples

			T(5,1) = 11:
  o   o     o     o     o     o     o     o     o     o     o
  |   |     |     |    / \   / \   / \    |    /|\   /|\   /|\
  o   o     o     o   o   o o   o o   o   o   o o o o o o o o o
  |   |    / \   / \  |         | |   |  /|\  |       |       |
  o   o   o   o o   o o         o o   o o o o o       o       o
  |  / \  |         | |         |
  o o   o o         o o         o
  |
  o
Triangle T(n,k) begins:
  1;
  0,     1;
  0,     1,   1;
  0,     4,   0,  1;
  0,    11,   2,  0,  1;
  0,    36,   5,  0,  0, 1;
  0,   117,  11,  3,  0, 0, 1;
  0,   393,  28,  7,  0, 0, 0, 1;
  0,  1339,  78,  8,  4, 0, 0, 0, 1;
  0,  4630, 201, 21,  9, 0, 0, 0, 0, 1;
  0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A000108(n-1).
Cf. A244454 (unordered unlabeled rooted trees).

Programs

  • Maple
    b:= proc(n, t, k) option remember; `if`(n=0,
          `if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)*
           b(n-j, max(0, t-1), k), j=1..n)))
        end:
    T:= (n, k)-> b(n-1, k$2) -`if`(n=1 and k=0, 0, b(n-1, k+1$2)):
    seq(seq(T(n, k), k=0..n-1), n=1..14);
  • Mathematica
    b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t>n, 0, Sum[b[j-1, k, k]*b[n-j, Max[0, t-1], k], {j, 1, n}]]]; T[n_, k_] := b[n-1, k, k] - If[n == 1 && k == 0, 0, b[n-1, k+1, k+1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 13 2015, translated from Maple *)

A244456 Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 2.

Original entry on oeis.org

1, 0, 1, 2, 4, 7, 15, 28, 56, 110, 220, 436, 878, 1762, 3560, 7205, 14650, 29838, 60991, 124938, 256628, 528238, 1089834, 2252860, 4666304, 9682422, 20125777, 41900433, 87369029, 182441944, 381499040, 798782945, 1674575394, 3514733683, 7385298837, 15534856067
Offset: 3

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 29 2014

Keywords

Examples

			a(5) = 1:
      o
     / \
    o   o
   / \
  o   o
		

Crossrefs

Column k=2 of A244454.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
          1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
          b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
        end:
    a:= n-> b(n-1$2, 2$2) -b(n-1$2, 3$2):
    seq(a(n), n=3..40);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]]]; a[n_] := b[n - 1, n - 1, 2, 2] - b[n - 1, n - 1, 3, 3] // FullSimplify; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711..., c = 0.4213018528699249210965028... (constants are same as for A001679). - Vaclav Kotesovec, Jul 02 2014
Showing 1-2 of 2 results.