cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A244570 Smallest prime p >= prime(n) such that p*prime(n)+2 is prime.

Original entry on oeis.org

3, 7, 11, 19, 17, 37, 23, 37, 43, 47, 47, 61, 53, 73, 109, 79, 89, 71, 109, 227, 113, 97, 139, 137, 127, 149, 127, 131, 283, 137, 139, 181, 173, 151, 167, 191, 173, 193, 193, 181, 239, 199, 233, 223, 239, 251, 239, 241, 233, 313, 241, 251, 271, 277, 373, 271
Offset: 2

Views

Author

Vladimir Shevelev, Jun 30 2014

Keywords

Comments

See comment in A244572.

Crossrefs

Programs

  • Mathematica
    a[n_] := For[p = Prime[n], True, p = NextPrime[p], If[PrimeQ[p Prime[n] + 2], Return[p]]];
    Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Nov 18 2018 *)
    sp[n_]:=Module[{p=n},While[CompositeQ[p*n+2],p=NextPrime[p]];p]; Table[ sp[k],{k,Prime[Range[2,60]]}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 19 2020 *)
  • PARI
    s=[]; for(n=2, 100, p=q=prime(n); while(!isprime(p*q+2), p=nextprime(p+1)); s=concat(s, p)); s \\ Colin Barker, Jun 30 2014

Extensions

More terms from Peter J. C. Moses, Jun 30 2014

A244571 Smallest prime p >= prime(n) such that p*prime(n)-2 is prime.

Original entry on oeis.org

3, 5, 7, 23, 13, 23, 19, 41, 29, 61, 37, 59, 43, 47, 71, 107, 61, 73, 71, 97, 109, 113, 89, 157, 113, 103, 107, 127, 167, 127, 131, 149, 139, 179, 163, 163, 181, 227, 173, 251, 199, 191, 223, 257, 229, 211, 223, 233, 271, 233, 239, 271, 281, 257, 443, 389, 373
Offset: 2

Views

Author

Vladimir Shevelev, Jun 30 2014

Keywords

Comments

See comment in A244572.

Crossrefs

Programs

  • Mathematica
    a[n_] := For[p = Prime[n], True, p = NextPrime[p], If[PrimeQ[p Prime[n] - 2], Return[p]]];
    Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Nov 18 2018 *)
  • PARI
    s=[]; for(n=2, 100, p=q=prime(n); while(!isprime(p*q-2), p=nextprime(p+1)); s=concat(s, p)); s \\ Colin Barker, Jun 30 2014

Extensions

More terms from Peter J. C. Moses, Jun 30 2014

A245457 a(n) = ((prime(n)-1)!+2) mod prime(n)# (cf. A002110).

Original entry on oeis.org

1, 4, 26, 92, 2102, 23102, 60062, 510512, 29099072, 3792578792, 84106011992, 2005604901302, 252305096583542, 11561510014033982, 52331045326680122, 31359378912013061912, 1792403716245452460152, 98060777857864844592572, 3401363059422802158514832
Offset: 1

Views

Author

Vladimir Shevelev, Jul 22 2014

Keywords

Comments

Smallest positive residue modulo p_1*...*p_n (cf. A002110) of (p_n-1)!+2, where p_n=prime(n).
See comment in A245460.

Crossrefs

Programs

Extensions

More terms and simpler definition from Jens Kruse Andersen, Jul 22 2014

A245460 Max (A245457(n), A245458(n)).

Original entry on oeis.org

1, 4, 26, 122, 2102, 23102, 450452, 9189182, 193993802, 3792578792, 116454478142, 5415133233512, 252305096583542, 11561510014033982, 562558737261811292, 31359378912013061912, 1792403716245452460152, 98060777857864844592572, 4456958491657464897364262
Offset: 1

Views

Author

Vladimir Shevelev, Jul 22 2014

Keywords

Comments

Knowing a(n) <= (prime(n))^4 would yield an infinity of twin primes (in fact it is sufficient if this inequality holds for an arbitrary infinite subsequence k = k_n). See the Shevelev link, Section 17, Corollary 6.
Of course, (p_n)^4/A002110(n) is very small, but remember that sequence k_n could have arbitrary fast growth, for example, as (A002110(n)/(p_n)^4)^n. - Vladimir Shevelev, Jul 24 2014

Crossrefs

Programs

  • PARI
    f(n,k) = ((prime(n)-k)!+2) % prod(i=1, n, prime(i))
    a(n) = max(f(n,1), f(n,2)) \\ Jens Kruse Andersen, Jul 22 2014

Extensions

More terms from Jens Kruse Andersen, Jul 22 2014

A245458 a(n) = ((prime(n)-2)!+2) mod prime(n)# (cf. A002110).

Original entry on oeis.org

1, 3, 8, 122, 212, 6932, 450452, 9189182, 193993802, 2677114442, 116454478142, 5415133233512, 51945166943672, 1521251317636052, 562558737261811292, 1229779565176982822, 130356633908760178922, 19227603501542126390702, 4456958491657464897364262
Offset: 1

Views

Author

Vladimir Shevelev, Jul 22 2014

Keywords

Comments

Smallest positive residue modulo p_1*...*p_n (cf. A002110) of (p_n-2)!+2, where p_n=prime(n).
See comment in A245460.

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[(Prime[n]-2)! + 2, Product[Prime[i], {i, 1, n}]];
    Array[a, 19] (* Jean-François Alcover, Dec 15 2018 *)
  • PARI
    a(n) = ((prime(n)-2)!+2) % prod(i=1, n, prime(i)) \\ Jens Kruse Andersen, Jul 22 2014

Extensions

More terms and simpler definition from Jens Kruse Andersen, Jul 22 2014
Showing 1-5 of 5 results.