cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244574 Absolute discriminants of complex quadratic fields with 3-class rank 3 and thus with infinite class tower.

Original entry on oeis.org

3321607, 3640387, 4019207, 4447704, 4472360, 4818916, 4897363, 5048347, 5067967, 5153431, 5288968, 5769988, 6562327, 7016747, 7060148, 7503391, 7546164, 8124503, 8180671, 8721735, 8819519, 8992363, 9379703, 9487991, 9778603
Offset: 1

Views

Author

Keywords

Comments

Diaz y Diaz discovered a(1), a(2) and three other terms in 1973. However, Buell was the first who proved minimality of a(1). According to Koch and Venkov, 3-class rank 3 ensures an infinite Hilbert (3-)class field tower.
The first 25 terms were computed with MAGMA over 18 hours of CPU time.
With exception of a(16)=7503391, all terms below 10^7 and lots of further terms below 10^8 are given in Appendice 1, pp. 66-77, of the Thesis of F. Diaz y Diaz (1978). - Daniel Constantin Mayer, Sep 27 2014

Examples

			3-class group of type (9,3,3) for a(1)=3321607, and of type (3,3,3) for a(4)=4447704. Unique 3-class group of type (27,3,3) for a(10)=5153431.
		

References

  • F. Diaz y Diaz, Sur le 3-rang des corps quadratiques, Publ. math. d'Orsay, No. 78-11, Univ. Paris-Sud (1978).

Crossrefs

Cf. A242862, A244575 (a subsequence).

Programs

  • Magma
    for d := 1 to 10^7 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if (3 eq #pPrimaryInvariants(C,3)) then d,","; end if; end if; end for;