cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244575 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3,3), thus having an infinite class tower.

Original entry on oeis.org

4447704, 4472360, 4818916, 4897363, 5067967, 5769988, 7060148, 8180671, 8721735, 8819519, 8992363, 9379703, 9487991, 9778603
Offset: 1

Views

Author

Keywords

Comments

I do not know who actually discovered a(1)=4447704. It is mentioned neither in Diaz y Diaz (1973) nor in Buell (1976). Maybe it can be found in Shanks (1976). Magma required 18 hours CPU time for the first 14 terms.
Meanwhile, it came to my attention that a(1)=4447704 and all the other terms below 10^7 are given in Appendice 1, pp. 66-77, of the Thesis of Diaz y Diaz (1978). a(1) is not contained in Shanks (1976). - Daniel Constantin Mayer, Sep 28 2014.

Examples

			a(1)=4447704 is the minimal absolute discriminant with elementary abelian 3-class group of type (3,3,3), whereas the smaller A244574(1)=3321607 has non-elementary (9,3,3).
		

References

  • F. Diaz y Diaz, Sur le 3-rang des corps quadratiques, Publ. math. d'Orsay, No. 78-11, Univ. Paris-Sud (1978).

Crossrefs

Cf. A242863, A244574 (a supersequence).

Programs

  • Magma
    for d := 1 to 10^7 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if ([3,3,3] eq pPrimaryInvariants(C,3)) then d,","; end if; end if; end for;