A244575 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3,3), thus having an infinite class tower.
4447704, 4472360, 4818916, 4897363, 5067967, 5769988, 7060148, 8180671, 8721735, 8819519, 8992363, 9379703, 9487991, 9778603
Offset: 1
Examples
a(1)=4447704 is the minimal absolute discriminant with elementary abelian 3-class group of type (3,3,3), whereas the smaller A244574(1)=3321607 has non-elementary (9,3,3).
References
- F. Diaz y Diaz, Sur le 3-rang des corps quadratiques, Publ. math. d'Orsay, No. 78-11, Univ. Paris-Sud (1978).
Links
- D. A. Buell, Class groups of quadratic fields, Math. Comp. 30 (1976), no. 135, 610-623.
- F. Diaz y Diaz, Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1, Séminaire Delange-Pisot-Poitou, 1973/74, no. G15.
- D. C. Mayer, Complex quadratic fields of type (3, 3, 3), 2014.
- Daniel C. Mayer, Index-p abelianization data of p-class tower groups, arXiv preprint arXiv:1502.03388 [math.NT], 2015.
- D. Shanks, Class groups of the quadratic fields found by Diaz y Diaz, Math. Comp. 30 (1976), 173-178.
Programs
-
Magma
for d := 1 to 10^7 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if ([3,3,3] eq pPrimaryInvariants(C,3)) then d,","; end if; end if; end for;
Comments