cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244583 a(n) = sum of all divisors of all positive integers <= prime(n).

Original entry on oeis.org

4, 8, 21, 41, 99, 141, 238, 297, 431, 690, 794, 1136, 1384, 1524, 1806, 2304, 2846, 3076, 3699, 4137, 4406, 5128, 5645, 6499, 7755, 8401, 8721, 9393, 9783, 10513, 13280, 14095, 15443, 15871, 18232, 18756, 20320, 21873, 22875, 24604, 26274, 27002, 29982, 30684
Offset: 1

Views

Author

Omar E. Pol, Jun 30 2014

Keywords

Comments

Limit_{n->oo} a(n)/prime(n)^2 = zeta(2)/2 = Pi^2/12 = A072691 = 0.82246703342.... For example, at n = 2*10^6, the ratio converges to 0.822467033... (+-2 in the last digit with increments on n of +100). If the ratio is calculated with a nonprime for the upper summation limit then the ratio runs slightly larger and converges slower. See formula section of A024916 for the general case. - Richard R. Forberg, Jan 04 2015
This is a subsequence of A024916 therefore a(n) also has a symmetric representation. For more information see A236104, A237593. - Omar E. Pol, Jan 05 2015

Crossrefs

Programs

  • Mathematica
    a244583[n_] := Sum[DivisorSigma[1, i], {i, #}] & /@ Prime[Range@n]; a244583[44] (* Michael De Vlieger, Jan 06 2015 *)
  • PARI
    a(n) = sum(i=1, prime(n), sigma(i)); \\ Michel Marcus, Sep 29 2014
    
  • Python
    from math import isqrt
    from sympy import prime
    def A244583(n): return -(s:=isqrt(p:=prime(n)))**2*(s+1) + sum((q:=p//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023

Formula

a(n) = A024916(A000040(n)).
a(n) = A001248(n) - A050482(n). - Omar E. Pol, Jan 05 2015

Extensions

More terms from Michel Marcus, Sep 29 2014

A244578 Sum of all aliquot divisors of all positive integers <= prime(n).

Original entry on oeis.org

1, 2, 6, 13, 33, 50, 85, 107, 155, 255, 298, 433, 523, 578, 678, 873, 1076, 1185, 1421, 1581, 1705, 1968, 2159, 2494, 3002, 3250, 3365, 3615, 3788, 4072, 5152, 5449, 5990, 6141, 7057, 7280, 7917, 8507, 8847, 9553, 10164, 10531, 11646, 11963, 12408, 12679
Offset: 1

Views

Author

Omar E. Pol, Jun 30 2014

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=1, prime(n), sigma(i)-i); \\ Michel Marcus, Sep 29 2014

Formula

a(n) = A153485(A000040(n)).
a(n) ~ (Pi^2/12 - 1/2) * n^2 * log(n)^2. - Amiram Eldar, Mar 22 2024

Extensions

More terms from Michel Marcus, Sep 29 2014

A253769 Sum of number of divisors of all positive integers <= prime(n).

Original entry on oeis.org

3, 5, 10, 16, 29, 37, 52, 60, 76, 103, 113, 142, 160, 170, 188, 219, 249, 263, 294, 314, 328, 358, 379, 413, 461, 484, 494, 516, 530, 554, 637, 659, 697, 707, 768, 782, 822, 858, 878, 919, 953, 973, 1033, 1049, 1072, 1086, 1168, 1240, 1267, 1281, 1307, 1343, 1365, 1423, 1468, 1504, 1544, 1562, 1604, 1632, 1642, 1709
Offset: 1

Views

Author

Omar E. Pol, Jan 14 2015

Keywords

Comments

a(n) is the index of the first position of prime(n) in A027750, the sequence that lists the divisors of all integers. - Michel Marcus, Oct 17 2015

Examples

			For n = 3 the third prime number is 5 and the sum of the number of divisors of the first five positive integers is 1 + 2 + 2 + 3 + 2 = 10, so a(3) = 10.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=300,d},d=Accumulate[DivisorSigma[0,Range[nn]]];Table[d[[k]],{k,Prime[Range[PrimePi[nn]]]}]] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    a(n) = sum(i=1, prime(n), numdiv(i)); \\ Michel Marcus, Jan 15 2015
    
  • Python
    from math import isqrt
    from sympy import prime
    def A253769(n): return (lambda m, p: 2*sum(p//k for k in range(1, m+1))-m*m)(isqrt(prime(n)),prime(n)) # Chai Wah Wu, Oct 09 2021

Formula

a(n) = A006218(A000040(n)).
Showing 1-3 of 3 results.