cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244589 E.g.f. A(x) satisfies the property that the sum of the coefficients of x^k, k=0..n, in A(x)^n equals (n+1)^n.

Original entry on oeis.org

1, 1, 5, 67, 1937, 98791, 7744549, 857382695, 126889656641, 24157912257775, 5749369223697701, 1672527291075462559, 584038879457972531185, 241150002566590866157943, 116245385996298375640197893, 64707252902905394310560934391, 41198982747438307655532993553409
Offset: 0

Views

Author

Paul D. Hanna, Jun 30 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 67*x^3/3! + 1937*x^4/4! + 98791*x^5/5! +...
where
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k/k! in A(x)^n, n>=0, like so:
A^0: [1],0,  0,    0,     0,       0,         0,           0, ...;
A^1: [1, 1], 5,   67,  1937,   98791,   7744549,   857382695, ...;
A^2: [1, 2, 12], 164,  4560,  223652,  17054920,  1853019716, ...;
A^3: [1, 3, 21,  297], 8049,  380853,  28237293,  3008400909, ...;
A^4: [1, 4, 32,  472, 12608], 577864,  41657008,  4348646600, ...;
A^5: [1, 5, 45,  695, 18465,  823475], 57747565,  5903103995, ...;
A^6: [1, 6, 60,  972, 25872, 1127916,  77020344], 7706019180, ...;
A^7: [1, 7, 77, 1309, 35105, 1502977, 100075045,  9797289761], ...; ...
then we can illustrate how the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals (n+1)^n:
1^0 = 1;
2^1 = 1 + 1 = 2;
3^2 = 1 + 2 + 12/2! = 9;
4^3 = 1 + 3 + 21/2! + 297/3! = 64;
5^4 = 1 + 4 + 32/2! + 472/3! + 12608/4! = 625;
6^5 = 1 + 5 + 45/2! + 695/3! + 18465/4! + 823475/5! = 7776;
7^6 = 1 + 6 + 60/2! + 972/3! + 25872/4! + 1127916/5! + 77020344/6! = 117649; ...
		

Crossrefs

Programs

  • PARI
    /* By Definition (slow): */
    {a(n)=if(n==0, 1, n!*((n+1)^n - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j/j!)^n + x*O(x^k), k)))/n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Faster, using series reversion: */
    {a(n)=local(B=sum(k=0, n+1, (k+1)^k*x^k)+x^3*O(x^n), G=1+x*O(x^n));
    for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); n!*polcoeff(x/serreverse(x*G), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. A(x) satisfies: Sum_{k=0..n} [x^k] A(x)^n = (n+1)^n.
a(n) ~ exp(1-exp(-1)) * n! * n^(n-1). - Vaclav Kotesovec, Jul 03 2014