cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244663 Binary representation of 4^n + 2^(n+1) - 1.

Original entry on oeis.org

111, 10111, 1001111, 100011111, 10000111111, 1000001111111, 100000011111111, 10000000111111111, 1000000001111111111, 100000000011111111111, 10000000000111111111111, 1000000000001111111111111, 100000000000011111111111111, 10000000000000111111111111111
Offset: 1

Views

Author

Colin Barker, Jul 08 2014

Keywords

Examples

			a(3) is 1001111 because A093069(3) = 79 which is 1001111 in base 2.
		

Crossrefs

Cf. A093069.

Programs

  • Magma
    [-1/9 + 10^(1 + n)/9 + 100^n : n in [1..15]]; // Wesley Ivan Hurt, Jul 09 2014
  • Maple
    A244663:=n->-1/9+10^(1+n)/9+100^n: seq(A244663(n), n=1..15); # Wesley Ivan Hurt, Jul 09 2014
  • Mathematica
    Table[-1/9 + 10^(1 + n)/9 + 100^n, {n, 15}] (* Wesley Ivan Hurt, Jul 09 2014 *)
    LinearRecurrence[{111,-1110,1000},{111,10111,1001111},20] (* Harvey P. Dale, Dec 11 2014 *)
  • PARI
    vector(100, n, -1/9+10^(1+n)/9+100^n)
    
  • PARI
    Vec(-x*(2000*x^2-2210*x+111)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100))
    

Formula

a(n) = -1/9+10^(1+n)/9+100^n.
a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3).
G.f.: -x*(2000*x^2-2210*x+111) / ((x-1)*(10*x-1)*(100*x-1)).