A244663 Binary representation of 4^n + 2^(n+1) - 1.
111, 10111, 1001111, 100011111, 10000111111, 1000001111111, 100000011111111, 10000000111111111, 1000000001111111111, 100000000011111111111, 10000000000111111111111, 1000000000001111111111111, 100000000000011111111111111, 10000000000000111111111111111
Offset: 1
Examples
a(3) is 1001111 because A093069(3) = 79 which is 1001111 in base 2.
Links
- Colin Barker, Table of n, a(n) for n = 1..450
- Wikipedia, Kynea number
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Cf. A093069.
Programs
-
Magma
[-1/9 + 10^(1 + n)/9 + 100^n : n in [1..15]]; // Wesley Ivan Hurt, Jul 09 2014
-
Maple
A244663:=n->-1/9+10^(1+n)/9+100^n: seq(A244663(n), n=1..15); # Wesley Ivan Hurt, Jul 09 2014
-
Mathematica
Table[-1/9 + 10^(1 + n)/9 + 100^n, {n, 15}] (* Wesley Ivan Hurt, Jul 09 2014 *) LinearRecurrence[{111,-1110,1000},{111,10111,1001111},20] (* Harvey P. Dale, Dec 11 2014 *)
-
PARI
vector(100, n, -1/9+10^(1+n)/9+100^n)
-
PARI
Vec(-x*(2000*x^2-2210*x+111)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100))
Formula
a(n) = -1/9+10^(1+n)/9+100^n.
a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3).
G.f.: -x*(2000*x^2-2210*x+111) / ((x-1)*(10*x-1)*(100*x-1)).