cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A247669 Decimal expansion of A_3 = Sum_{n >= 1} H(n)^2/((2n-1)*(2n)*(2n+1))^3, where H(n) is the n-th harmonic number.

Original entry on oeis.org

0, 0, 4, 6, 4, 0, 4, 5, 0, 2, 0, 3, 5, 7, 8, 1, 2, 3, 9, 8, 9, 1, 8, 0, 5, 2, 9, 2, 3, 6, 2, 3, 4, 5, 4, 6, 7, 2, 5, 2, 6, 9, 3, 9, 0, 7, 8, 3, 2, 0, 2, 7, 3, 9, 2, 3, 0, 0, 4, 9, 2, 4, 9, 0, 7, 2, 3, 4, 4, 9, 7, 1, 8, 3, 2, 4, 1, 2, 5, 7, 3, 5, 3, 7, 4, 0, 5, 9, 7, 0, 3, 7, 2, 2, 8, 3, 4, 3, 8, 7, 8, 1, 0, 5
Offset: 0

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			0.00464045020357812398918052923623454672526939078320273923...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); 4*Log(2)^3 + ((7*Evaluate(L,3))/8 - 35/4)*Log(2)^2 - ((-(1/8))*9*Evaluate(L,2) + (7*Evaluate(L,3))/8 + (45*Evaluate(L,4))/32 - 12)*Log(2) - Evaluate(L,2)/4 - (41*Evaluate(L,3))/8 - (3/32)*Evaluate(L,2)*Evaluate(L,3) + (45*Evaluate(L,4))/64 + (17*Evaluate(L,5))/32; // G. C. Greubel, Aug 31 2018
  • Mathematica
    A3 = 4*Log[2]^3 + ((7*Zeta[3])/8 - 35/4)*Log[2]^2 - ((-(1/8))*9*Zeta[2] + (7*Zeta[3])/8 + (45*Zeta[4])/32 - 12)*Log[2] - Zeta[2]/4 - (41*Zeta[3])/8 - (3/32)*Zeta[2]*Zeta[3] + (45*Zeta[4])/64 + (17*Zeta[5])/32; Join[{0, 0}, RealDigits[A3, 10, 102] // First]
  • PARI
    4*log(2)^3 + ((7*zeta(3))/8 - 35/4)*log(2)^2 - ((-(1/8))*9*zeta(2) + (7*zeta(3))/8 + (45*zeta(4))/32 - 12)*log(2) - zeta(2)/4 - (41*zeta(3))/8 - (3/32)*zeta(2)*zeta(3) + (45*zeta(4))/64 + (17*zeta(5))/32 \\ Michel Marcus, Sep 22 2014
    

Formula

A_3 = 4*log(2)^3 + ((7*zeta(3))/8 - 35/4)*log(2)^2 - ((-(1/8))*9*zeta(2) + (7*zeta(3))/8 + (45*zeta(4))/32 - 12)*log(2) - zeta(2)/4 - (41*zeta(3))/8 - (3/32)*zeta(2)*zeta(3) + (45*zeta(4))/64 + (17*zeta(5))/32.

A247670 Decimal expansion of Sum_{n >= 0} (-1)^n*H(n)/(2n+1)^3, where H(n) is the n-th harmonic number.

Original entry on oeis.org

0, 2, 8, 5, 7, 4, 1, 7, 0, 6, 3, 6, 2, 4, 3, 5, 9, 0, 9, 9, 9, 0, 8, 4, 2, 9, 5, 1, 2, 5, 0, 4, 4, 3, 1, 0, 8, 8, 6, 0, 3, 0, 1, 8, 6, 9, 1, 4, 8, 6, 0, 1, 6, 0, 9, 1, 3, 3, 1, 9, 3, 5, 0, 9, 8, 8, 4, 9, 8, 4, 2, 4, 1, 7, 2, 1, 7, 2, 9, 5, 1, 6, 9, 9, 9, 7, 3, 8, 0, 5, 8, 8, 2, 1, 2, 4, 9, 0, 1, 2, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			-0.02857417063624359099908429512504431088603018691486...
		

Crossrefs

Programs

  • Mathematica
    s = -(Pi^3/16)*Log[2] - (7*Pi/16)*Zeta[3] + (1/512)*(PolyGamma[3, 1/4] - PolyGamma[3, 3/4]); Join[{0}, RealDigits[s, 10, 101] // First]

Formula

Equals -(Pi^3/16)*log(2) - (7*Pi/16)*zeta(3) + (1/512)*(PolyGamma(3, 1/4) - PolyGamma(3, 3/4)), where PolyGamma(n,z) gives the n-th derivative of the digamma function Psi^(n)(z).

A260272 Decimal expansion of Sum_{n>=1} H(n)^2/(n+1)^4, where H(n) is the n-th harmonic number.

Original entry on oeis.org

1, 2, 3, 4, 6, 3, 0, 8, 8, 7, 9, 2, 3, 9, 1, 5, 2, 3, 1, 4, 6, 1, 9, 6, 7, 2, 9, 6, 2, 0, 6, 8, 1, 3, 1, 9, 9, 9, 8, 2, 3, 3, 2, 2, 4, 7, 0, 3, 4, 2, 7, 2, 3, 3, 7, 0, 8, 9, 4, 5, 8, 6, 1, 7, 7, 4, 7, 6, 1, 5, 9, 2, 5, 0, 9, 1, 6, 4, 3, 2, 3, 9, 3, 6, 4, 1, 6, 7, 8, 4, 1, 3, 6, 7, 2, 4, 2, 4, 0, 5, 7, 4, 2, 4, 8
Offset: 0

Views

Author

Jean-François Alcover, Jul 22 2015

Keywords

Examples

			0.1234630887923915231461967296206813199982332247034272337089458617747615925...
		

Crossrefs

Cf. A244676.

Programs

  • Mathematica
    RealDigits[(37/22680)*Pi^6 - Zeta[3]^2, 10, 105] // First

Formula

(37/22680)*Pi^6 - zeta(3)^2.
Showing 1-3 of 3 results.