cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A244840 Denominators of the triangle T(n,k) = (n*(n+1)/2+k+1)/(k+1) for n >= k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 5, 2, 1, 1, 1, 3, 1, 5, 3, 1, 2, 1, 1, 1, 1, 5, 1, 7, 2, 1, 1, 2, 1, 4, 1, 2, 7, 8, 1, 2, 1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 1, 1, 1, 1, 2, 5, 1, 7, 4, 3, 5, 1, 2
Offset: 0

Views

Author

Paul Curtz, Jul 07 2014

Keywords

Comments

Numerators: A244734(n,k).
See A244734 for the first entries of the rational triangle T(n,k).

Examples

			T(0,0) = 1/1, T(1,0) = 2/1, T(1,1) = 3/2,... .
The triangle a(n,k) begins:
n/k  0 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 ...
0:   1
1:   1 2
2:   1 2 1
3:   1 1 1 2
4:   1 1 3 2 1
5:   1 2 1 4 1 2
6:   1 2 1 4 5 2 1
7:   1 1 3 1 5 3 1 2
8:   1 1 1 1 5 1 7 2 1
9:   1 2 1 4 1 2 7 8 1  2
10:  1 2 3 4 1 6 7 8 9  2  1
11:  1 1 1 2 5 1 7 4 3  5  1  2
12:  1 1 1 2 5 1 7 4 3  5 11  2 1
13:  1 2 3 4 5 6 1 8 9 10 11 12 1   2
14:  1 2 1 4 1 2 1 8 3  2 11  4 13  2  1
15:  1 1 1 1 1 1 7 1 3  1 11  1 13  7  1  2
16:  1 1 3 1 5 3 7 1 9  5 11  3 13  7 15  2  1
17:  1 2 1 4 5 2 7 8 1 10 11  4 13 14  5 16  1  2
18:  1 2 1 4 5 2 7 8 1 10 11  4 13 14  5 16 17  2  1
19:  1 1 3 2 1 3 7 4 9  1 11  6 13  7  3  8 17  9  1  2
20:  1 1 1 2 1 1 1 4 3  1 11  2 13  1  1  8 17  3 19  2  1
n/k  0 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 ...
.. reformatted - _Wolfdieter Lang_, Jul 28 2014 .
The second column is of period 4: repeat 2, 2, 1, 1. From A014695 or A130658.
The third column is of period 3: repeat 1, 1, 3. From A109007.
The fourth column is of period 8: repeat 2, 2, 4, 4, 1, 1, 4, 4.
The fifth column is of period 5: repeat 1, 1, 5, 5, 5.
The sixth column is of period 12: repeat 2, 2, 3, 1, 2, 6, 1, 1, 6, 2, 1, 3 .
The seventh column is of period 7: repeat 1, 1, 7, 7, 7, 7, 7.
Hence the positive terms of A022998.
Main diagonal: A000034(n).
Alternate main and second diagonal: A130658(n).
Common denominator by row: 1, 2, 2, 2, 6, 4, 20, 30, 70, ... .
		

Crossrefs

Programs

  • Mathematica
    Table[(n*(n+1)/2+k+1)/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 08 2014 *)

Formula

a(n,k) = denominator((n*(n+1)/2 + k + 1)/(k+1)) for n >= k >= 0.

Extensions

Editse: Name reformulated, comment with T(n,k) reference added. - Wolfdieter Lang, Jul 28 2014
Showing 1-1 of 1 results.