cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244752 Square array read by antidiagonals in which rows are indexed by composite numbers w and row w gives n such that n^(w-1) == 1 (mod w^2).

Original entry on oeis.org

17, 33, 37, 49, 73, 65, 65, 109, 129, 80, 81, 145, 193, 82, 101, 97, 181, 257, 161, 201, 145, 113, 217, 321, 163, 301, 289, 197, 129, 253, 385, 242, 401, 433, 393, 26, 145, 289, 449, 244, 501, 577, 589, 199, 257, 161, 325, 513, 323, 601, 721, 785, 224, 513
Offset: 2

Views

Author

Felix Fröhlich, Jul 05 2014

Keywords

Comments

We can say that "w is a Wieferich pseudoprime to base n".
Any prime factor of w is a Wieferich prime to base n.

Examples

			Table starts
w=4: 17, 33, 49, 65, 81, 97, 113, ....
w=6: 37, 73, 109, 145, 181, 217, ....
w=8: 65, 129, 193, 257, 321, 385, ....
w=9: 80, 82, 161, 163, 242, 244, ....
w=10: 101, 201, 301, 401, 501, 601, ....
w=12: 145, 289, 433, 577, 721, 865, ....
w=14: 197, 393, 589, 785, 981, ....
....
		

Crossrefs

Programs

  • Mathematica
    T = {};
    For[w = 4, w <= 100, w++,
      If[PrimeQ[w], Continue[]];
      t = {};
      For [n = 2, n <= 10^5, n++,
       If[Mod[n^(w - 1), w^2] == 1, AppendTo[t, n]]];
      AppendTo[T, t]];
    Print[TableForm[T]];
    A244752 = {};
    For[c = 1, c <= 50, c++,
      For[r = 1, r <= c, r++, AppendTo[A244752, T[[r]][[c - r + 1]]]]];
    A244752 (* Robert Price, Sep 07 2019 *)
  • PARI
    forcomposite(w=2, 20, print1("w=", w, ": "); for(n=2, 10^3, if(Mod(n, w^2)^(w-1)==1, print1(n, ", "))); print(""))

Extensions

a(17)-a(55) from Robert Price, Sep 07 2019