A244752 Square array read by antidiagonals in which rows are indexed by composite numbers w and row w gives n such that n^(w-1) == 1 (mod w^2).
17, 33, 37, 49, 73, 65, 65, 109, 129, 80, 81, 145, 193, 82, 101, 97, 181, 257, 161, 201, 145, 113, 217, 321, 163, 301, 289, 197, 129, 253, 385, 242, 401, 433, 393, 26, 145, 289, 449, 244, 501, 577, 589, 199, 257, 161, 325, 513, 323, 601, 721, 785, 224, 513
Offset: 2
Examples
Table starts w=4: 17, 33, 49, 65, 81, 97, 113, .... w=6: 37, 73, 109, 145, 181, 217, .... w=8: 65, 129, 193, 257, 321, 385, .... w=9: 80, 82, 161, 163, 242, 244, .... w=10: 101, 201, 301, 401, 501, 601, .... w=12: 145, 289, 433, 577, 721, 865, .... w=14: 197, 393, 589, 785, 981, .... ....
Links
- Robert Price, Table of n, a(n) for n = 2..1276
Programs
-
Mathematica
T = {}; For[w = 4, w <= 100, w++, If[PrimeQ[w], Continue[]]; t = {}; For [n = 2, n <= 10^5, n++, If[Mod[n^(w - 1), w^2] == 1, AppendTo[t, n]]]; AppendTo[T, t]]; Print[TableForm[T]]; A244752 = {}; For[c = 1, c <= 50, c++, For[r = 1, r <= c, r++, AppendTo[A244752, T[[r]][[c - r + 1]]]]]; A244752 (* Robert Price, Sep 07 2019 *)
-
PARI
forcomposite(w=2, 20, print1("w=", w, ": "); for(n=2, 10^3, if(Mod(n, w^2)^(w-1)==1, print1(n, ", "))); print(""))
Extensions
a(17)-a(55) from Robert Price, Sep 07 2019
Comments