A244801 Smallest m such that for the prime p = prime(n) the congruence F_(p-(p/5)) == mp (mod p^2) holds (i.e., smallest m such that prime(n) is a near-Wall-Sun-Sun prime), where F_k is the k-th Fibonacci number and (p/5) is the Legendre symbol.
1, 1, 1, 3, 5, 3, 16, 3, 15, 26, 25, 13, 39, 39, 16, 28, 10, 48, 7, 55, 58, 49, 21, 5, 37, 97, 22, 24, 26, 60, 13, 64, 58, 117, 120, 60, 44, 160, 44, 130, 174, 131, 94, 31, 141, 5, 112, 3, 154, 18, 29, 5, 182, 250, 2, 105
Offset: 1
Keywords
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..291043
- F. G. Dorais and D. Klyve, A Wieferich Prime Search up to 6.7 x 10^15, J. Integer Seq. Volume 14, Issue 9 (2011).
- R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. 76 (2007), 2087-2094.
- PrimeGrid, Wall-Sun-Sun Prime Search statistics
- PrimeGrid, Welcome to the Wall-Sun-Sun prime search
Programs
-
Mathematica
A= 0; p = 0; While[A < 200, p = NextPrime[p]; A= Mod[(Fibonacci[p-JacobiSymbol[p,5]])/p, p]; Print[A]] (* Javier Rivera Romeu, Jan 11 2022 *)
-
PARI
forprime(p=2, 10^2, a=fibonacci(p-kronecker(p, 5))%p^2; a=a/p; print1(a, ", "))
-
Sage
A, p = 0, 0 while A <200: p = next_prime(p) A = (fibonacci(p-legendre_symbol(p, 5))/p)%p print(A, end=", ") #Javier Rivera Romeu, Jan 08 2022
Comments