cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244864 a(n) = binomial(n+5,5) + 4*binomial(n+4,5) + 4*binomial(n+3,5) + binomial(n+2,5).

Original entry on oeis.org

1, 10, 49, 165, 440, 1001, 2030, 3774, 6555, 10780, 16951, 25675, 37674, 53795, 75020, 102476, 137445, 181374, 235885, 302785, 384076, 481965, 598874, 737450, 900575, 1091376, 1313235, 1569799, 1864990, 2203015, 2588376, 3025880, 3520649, 4078130, 4704105, 5404701, 6186400, 7056049
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2014

Keywords

Programs

  • Maple
    a:= n-> (2*n+3)*(n+2)*(n+1)*(n^2+3*n+4)/24:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 11 2014
  • Mathematica
    Table[Binomial[n+5,5]+4*Binomial[n+4,5]+4*Binomial[n+3,5]+ Binomial[ n+2,5],{n,0,40}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,10,49,165,440,1001},40] (* Harvey P. Dale, Nov 13 2014 *)
    a[n_] := (2 n^5 + 15 n^4 + 48 n^3 + 81 n^2 + 70 n + 24)/  24; Array[a, 40, 0] (* or *)
    CoefficientList[Series[(x^3 + 4 x^2 + 4 x + 1)/(x - 1)^6, {x, 0, 40}], x] (* Robert G. Wilson v, Feb 26 2015 *)
  • PARI
    a(n)=(2*n+3)*(n+2)*(n+1)*(n^2+3*n+4)/24 \\ Charles R Greathouse IV, Oct 21 2022

Formula

G.f.: (x+1)*(x^2+3*x+1)/(x-1)^6; a(n) = (2*n+3)*(n+2)*(n+1)*(n^2+3*n+4)/24. - Alois P. Heinz, Jul 11 2014
a(n) = Sum_{k=A000292(n)..A000292(n+1)} k. - J. M. Bergot, Feb 25 2015