cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A244873 Number of magic labelings of the prism graph I X C_7 with magic sum n.

Original entry on oeis.org

1, 29, 289, 1640, 6604, 21122, 57271, 137155, 298184, 599954, 1132942, 2029229, 3475465, 5728289, 9132418, 14141618, 21342771, 31483251, 45501823, 64563278, 90097018, 123839804, 167882881, 224723693, 297322402, 389163424, 504322196, 647537387, 824288767, 1040880947, 1304533204
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Comments

The graph is the 5th one shown in the link. This sequence is also the number of magic labelings of the cycle-of-loops graph LOOP X C_7 with magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. A similar identity holds between the sequences for I X C_k and LOOP X C_k for all odd k. - David J. Seal, Sep 14 2017

Crossrefs

Cf. A019298, A061927, A244497, A292281, A289992 (analogs for prism graphs I X C_k, k = 3,4,5,6,8).
Cf. A006325, A244879, A244880 (analogs for LOOP X C_k, k = 4,6,8).

Programs

  • Mathematica
    Table[61 n^7/1440 + 427 n^6/960 + 1463 n^5/720 + 2009 n^4/384 + 11809 n^3/1440 + 1253 n^2/160 + 169 n/40 + (-1)^n/256 + 255/256, {n, 0, 30}] (* Bruno Berselli, Jul 08 2014 *)
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,29,289,1640,6604,21122,57271,137155,298184},40] (* Harvey P. Dale, Aug 09 2017 *)

Formula

G.f.: (1+22*x+106*x^2+169*x^3+106*x^4+22*x^5+x^6)/((1-x)^8*(1+x)).
a(n) = 61*n^7/1440 + 427*n^6/960 + 1463*n^5/720 + 2009*n^4/384 + 11809*n^3/1440 + 1253*n^2/160 + 169*n/40 + (-1)^n/256 + 255/256. [Bruno Berselli, Jul 08 2014]

Extensions

Name made more self-contained by David J. Seal, Sep 14 2017

A244876 Number of magic labelings with magic sum n of 8th graph shown in link.

Original entry on oeis.org

1, 18, 154, 813, 3157, 9880, 26429, 62713, 135470, 271285, 510485, 911840, 1558368, 2564093, 4082142, 6313934, 9519951, 14031732, 20265700, 28738335, 40083439, 55070862, 74627587, 99860383, 132081092, 172833583, 223923623, 287450506, 365841890, 461890475, 578794188
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[3 n^7/160 + 63 n^6/320 + 151 n^5/160 + 339 n^4/128 + 2251 n^3/480 + n^2 (-1)^n/64 + 1677 n^2/320 + 3 n (-1)^n/64 + 3259 n/960 + 9 (-1)^n/256 + 247/256, {n,0,30}] (* Bruno Berselli, Jul 08 2014 *)

Formula

G.f.: (1+13*x+71*x^2+174*x^3+238*x^4+174*x^5+71*x^6+13*x^7+x^8)/((1-x)^8*(1+x)^3).
a(n) = 3*n^7/160 + 63*n^6/320 + 151*n^5/160 + 339*n^4/128 + 2251*n^3/480 + n^2*(-1)^n/64 + 1677*n^2/320 + 3*n*(-1)^n/64 + 3259*n/960 + 9*(-1)^n/256 + 247/256. [Bruno Berselli, Jul 08 2014]

A244870 Number of magic labelings with magic sum n of 2nd graph shown in link.

Original entry on oeis.org

1, 8, 37, 121, 318, 717, 1446, 2678, 4639, 7614, 11955, 18087, 26516, 37835, 52732, 71996, 96525, 127332, 165553, 212453, 269434, 338041, 419970, 517074, 631371, 765050, 920479, 1100211, 1306992, 1543767, 1813688, 2120120, 2466649, 2857088, 3295485
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[7 n^5/120 + 7 n^4/16 + 35 n^3/24 + 21 n^2/8 + 149 n/60 + (-1)^n/32 + 31/32, {n, 0, 40}] (* Bruno Berselli, Jul 08 2014 *)

Formula

G.f.: (1 + 3*x + 6*x^2 + 3*x^3 + x^4)/((1 - x)^6*(1 + x)).
a(n) = 7*n^5/120 + 7*n^4/16 + 35*n^3/24 + 21*n^2/8 + 149*n/60 + (-1)^n/32 + 31/32. [Bruno Berselli, Jul 08 2014]

A244871 Number of magic labelings with magic sum n of 3rd graph shown in link.

Original entry on oeis.org

1, 10, 55, 217, 672, 1755, 4030, 8386, 16135, 29140, 49941, 81915, 129430, 198037, 294652, 427780, 607725, 846846, 1159795, 1563805, 2078956, 2728495, 3539130, 4541382, 5769907, 7263880, 9067345, 11229631, 13805730, 16856745, 20450296, 24661000, 29570905
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^6/48 + 3 n^5/16 + 77 n^4/96 + 2 n^3 + 37 n^2/12 - n (-1)^n/32 + 89 n/32 - 3 (-1)^n/64 + 67/64, {n,0,40}] (* Bruno Berselli, Jul 08 2014 *)

Formula

G.f.: (1+5*x+13*x^2+22*x^3+13*x^4+5*x^5+x^6)/((1-x)^7*(1+x)^2).
a(n) = n^6/48 + 3*n^5/16 + 77*n^4/96 + 2*n^3 + 37*n^2/12 - n*(-1)^n/32 + 89*n/32 - 3*(-1)^n/64 + 67/64. [Bruno Berselli, Jul 08 2014]

A244872 Number of magic labelings with magic sum n of 4th graph shown in link.

Original entry on oeis.org

1, 15, 114, 569, 2138, 6562, 17329, 40765, 87512, 174452, 327137, 582784, 993895, 1632561, 2595510, 4009958, 6040323, 8895861, 12839284, 18196419, 25366968, 34836428, 47189231, 63123163, 83465122, 109188274, 141430667, 181515362, 230972141, 291560851, 365296444
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[17 n^7/1440 + 119 n^6/960 + 28 n^5/45 + 721 n^4/384 + 5243 n^3/1440 + 721 n^2/160 + 129 n/40 + (-1)^n/256 + 255/256, {n, 0, 30}]
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,15,114,569,2138,6562,17329,40765,87512},40] (* Harvey P. Dale, Nov 01 2021 *)

Formula

G.f.: (1+8*x+29*x^2+43*x^3+29*x^4+8*x^5+x^6)/((1-x)^8*(1+x)).
a(n) = 17*n^7/1440 + 119*n^6/960 + 28*n^5/45 + 721*n^4/384 + 5243*n^3/1440 + 721*n^2/160 + 129*n/40 + (-1)^n/256 + 255/256. [Bruno Berselli, Jul 08 2014]

A244874 Number of magic labelings with magic sum n of 6th graph shown in link.

Original entry on oeis.org

1, 17, 137, 707, 2709, 8417, 22408, 53008, 114251, 228431, 429325, 766167, 1308451, 2151643, 3423880, 5293736, 7979133, 11757477, 16977097, 24070067, 33566489, 46110317, 62476800, 83591624, 110551831, 144648595, 187391933, 240537431, 306115063, 386460183, 484246768
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,17,137,707,2709,8417,22408,53008,114251},40] (* Harvey P. Dale, Jun 30 2022 *)
  • PARI
    Vec((1 + 10*x + 38*x^2 + 60*x^3 + 38*x^4 + 10*x^5 + x^6) / ((1 - x)^8*(1 + x)) + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 10*x + 38*x^2 + 60*x^3 + 38*x^4 + 10*x^5 + x^6) / ((1 - x)^8*(1 + x)).
a(n) = (-315*(-129+(-1)^n) + 138528*n + 202104*n^2 + 171248*n^3 + 93030*n^4 + 32312*n^5 + 6636*n^6 + 632*n^7) / 40320. - Colin Barker, Jan 11 2017

A244875 Number of magic labelings with magic sum n of 7th graph shown in link.

Original entry on oeis.org

1, 21, 179, 938, 3612, 11242, 29947, 70855, 152720, 305330, 573812, 1023939, 1748545, 2875153, 4574922, 7073018, 10660515, 15707931, 22680505, 32155320, 44840378, 61595732, 83456781, 111659833, 147670042, 193211824, 250301858, 321284777, 408871655, 516181395
Offset: 0

Views

Author

N. J. A. Sloane, Jul 08 2014

Keywords

Crossrefs

Programs

  • PARI
    Vec((1 + 14*x + 52*x^2 + 77*x^3 + 52*x^4 + 14*x^5 + x^6) / ((1 - x)^8*(1 + x)) + O(x^40)) \\ Colin Barker, Jan 11 2017

Formula

G.f.: (1 + 14*x + 52*x^2 + 77*x^3 + 52*x^4 + 14*x^5 + x^6) / ((1 - x)^8*(1 + x)).
a(n) = (315*(255+(-1)^n) + 306144*n + 498456*n^2 + 452312*n^3 + 250530*n^4 + 86576*n^5 + 17724*n^6 + 1688*n^7) / 80640. - Colin Barker, Jan 11 2017
Showing 1-7 of 7 results.