cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244884 Expansion of (-2 +x^2 +x -x*sqrt(1-2*x-3*x^2))/(-1 +x -sqrt(1-2*x-3*x^2)).

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26324, 71799, 196938, 542895, 1503312, 4179603, 11662902, 32652735, 91695540, 258215664, 728997192, 2062967382, 5850674704, 16626415975, 47337954326, 135015505407, 385719506620, 1103642686382
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2014

Keywords

Comments

For n > 1, a(n) is the number of Motzkin n-paths that start with an up step. - Gennady Eremin, Sep 18 2021

Crossrefs

Apart from initial terms, same as A002026 and A105695.
Cf. A001006.

Programs

  • Mathematica
    CoefficientList[Series[(-2 + x^2 + x - x Sqrt[1 - 2 x - 3 x^2])/(-1 + x - Sqrt[1 - 2 x - 3 x^2]), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 10 2014 *)
  • PARI
    my(x='x + O('x^50)); Vec((-2 +x^2 +x -x*sqrt(1-2*x-3*x^2))/(-1 +x -sqrt(1-2*x-3*x^2))) \\ G. C. Greubel, Feb 14 2017

Formula

a(n) ~ 3^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 10 2014
Conjecture D-finite with recurrence: (n+2)*a(n) +(-3*n-1)*a(n-1) -n*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Jan 24 2020
G.f.: x + (1-x)*M(x), where M(x) is the g.f. of A001006. - Gennady Eremin, Feb 14 2021