cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244886 G.f.: (1-x+sqrt(1-2*x-3*x^2))/(1-3*x+x^2+x^3+(1-x^2)*sqrt(1-2*x-3*x^2)).

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 56, 147, 393, 1065, 2915, 8042, 22330, 62339, 174837, 492313, 1391134, 3943130, 11207594, 31934552, 91197474, 260969372, 748176873, 2148622932, 6180146228, 17801978083, 51347929943, 148293450023, 428774359142, 1241110916678
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2014

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(1 - x + Sqrt[1 - 2 x - 3 x^2])/(1 - 3 x + x^2 + x^3 + (1 - x^2) Sqrt[1 - 2 x - 3 x^2]), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 10 2014 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x+sqrt(1-2*x-3*x^2))/(1-3*x+x^2+x^3+(1-x^2)*sqrt(1-2*x-3*x^2))) \\ G. C. Greubel, Apr 05 2017

Formula

a(n) ~ 3^(n+7/2)/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 10 2014
Conjecture D-finite with recurrence: n*a(n) +(-5*n+3)*a(n-1) +2*(n)*a(n-2) +(13*n-30)*a(n-3) +3*(-1)*a(n-4) +(-8*n+21)*a(n-5) +3*(-n+3)*a(n-6)=0. - R. J. Mathar, Jan 24 2020