A244912 Sum of leading digits in representations of n in bases 2,3,...,n.
1, 2, 3, 4, 6, 7, 9, 9, 11, 12, 15, 16, 18, 20, 20, 21, 25, 26, 29, 31, 33, 34, 38, 36, 38, 39, 42, 43, 47, 48, 52, 54, 56, 58, 58, 59, 61, 63, 67, 68, 72, 73, 76, 79, 81, 82, 88, 84, 88, 90, 93, 94, 99, 101, 105, 107, 109, 110, 116, 117, 119, 122, 117, 119, 123
Offset: 2
Examples
8 in bases 2...8 is: 1000 (base 2) 22 (base 3) 20 (base 4) 13 (base 5) 12 (base 6) 11 (base 7) 10 (base 8) The sum of first digits is 1+2+2+1+1+1+1 = 9, so a(8)=9.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
f[n_] := Sum[ IntegerDigits[n, k][[1]], {k, 2, n}]; Array[f, 70, 2] (* Robert G. Wilson v, Aug 02 2014 *)
-
PARI
a(n) = sum(i=2, n, digits(n, i)[1]); \\ Michel Marcus, Jul 17 2014
-
Python
import math def modlg(a, b): return a // b**int(math.log(a, b)) for n in range(2,77): s=0 for k in range(2,n+1): s += modlg(n,k) print(s, end=', ')
Formula
a(n) = Sum_{k=2..n} floor(n/f(n,k)), with f(n,k) = k^floor(log_k(n)). - Ridouane Oudra, Apr 26 2025