cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244913 Primes prime(k) such that 2^(k-1) - prime(k) is also prime.

Original entry on oeis.org

11, 13, 17, 19, 23, 37, 61, 233, 257, 1553, 2879, 4919, 6389, 7621, 8081, 35593, 37951, 96263, 206419, 596803, 1202837, 2837851
Offset: 1

Views

Author

Robert G. Wilson v, Jul 09 2014

Keywords

Comments

a(22) > 1211303. - J.W.L. (Jan) Eerland, Dec 08 2022
a(23) > 3000000. - Michael S. Branicky, Jun 03 2025

Crossrefs

Programs

  • Maple
    for i from 1 do
        p := ithprime(i) ;
        if isprime(2^(numtheory[pi](p-1))-p) then
            printf("%d,\n",p) ;
        end if;
    end do: # R. J. Mathar, Jul 11 2014
  • Mathematica
    p = 2; lst = {}; While[p < 800001, If[ PrimeQ[ 2^(PrimePi@ p-1) - p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst
    n=1;Monitor[Parallelize[While[True,If[PrimeQ[2^(PrimePi[Prime[n]-1])-Prime[n]],Print[Prime[n]]];n++];n],n] (* J.W.L. (Jan) Eerland, Dec 08 2022 *)
  • PARI
    is(n)=isprime(n) && isprime(2^primepi(n-1)-n) \\ Charles R Greathouse IV, Feb 25 2017

Formula

{p in A000040: 2^[A000720(p-1)]-p in A000040}. - R. J. Mathar, Jul 11 2014

Extensions

a(21) from J.W.L. (Jan) Eerland, Dec 08 2022
a(22) from Michael S. Branicky, Jun 02 2025