A227126 Primes prime(k) such that 2^(k+1) - prime(k) is also prime.
2, 3, 5, 11, 17, 167, 193, 197, 433, 4111, 9173, 42929, 95279, 98897, 139409, 142567, 228617, 329333, 344209, 791191, 829177, 1274509, 1284037, 2432791, 2443741
Offset: 1
Examples
5 is a term because 5 is the 3rd prime, and 2^(3+1) - 5 = 16 - 5 = 11 which is a prime 11 is in the sequence because 11 = prime(5) and 2^(5 + 1) - 11 = 64 - 11 = 53 is a prime.
Programs
-
Mathematica
p = 2; lst = {}; While[p < 850001, If[ PrimeQ[ 2^(PrimePi@ p +1) - p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jul 09 2014 *)
-
PARI
lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip+1)-p), print1(p, ", ")); ip++;);} \\ Michel Marcus, Jul 12 2014
Extensions
a(3), a(6), a(8)-a(12) from Joerg Arndt, Jul 03 2013
Corrected and extended through a(21) by Robert G. Wilson v, Jul 09 2014
Entry revised by N. J. A. Sloane, Jan 02 2019, incorporating data from a later submission from Robert G. Wilson v
a(22)-a(25) from Michael S. Branicky, May 31 2025
Comments