cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A227126 Primes prime(k) such that 2^(k+1) - prime(k) is also prime.

Original entry on oeis.org

2, 3, 5, 11, 17, 167, 193, 197, 433, 4111, 9173, 42929, 95279, 98897, 139409, 142567, 228617, 329333, 344209, 791191, 829177, 1274509, 1284037, 2432791, 2443741
Offset: 1

Views

Author

Gerasimov Sergey, Jul 02 2013

Keywords

Comments

The corresponding primes 2^(k + 1) - prime(k) are 2, 5, 11, 53, 239, 1099511627609, 35184372088639, ...
The prime indices k are 1, 2, 3, 5, 7, 39, 44, 45, 84, 566, 1137, ...

Examples

			5 is a term because 5 is the 3rd prime, and 2^(3+1) - 5 = 16 - 5 = 11 which is a prime
11 is in the sequence because 11 = prime(5) and 2^(5 + 1) - 11 = 64 - 11 = 53 is a prime.
		

Crossrefs

Programs

  • Mathematica
    p = 2; lst = {}; While[p < 850001, If[ PrimeQ[ 2^(PrimePi@ p +1) - p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jul 09 2014 *)
  • PARI
    lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip+1)-p), print1(p, ", ")); ip++;);} \\ Michel Marcus, Jul 12 2014

Extensions

a(3), a(6), a(8)-a(12) from Joerg Arndt, Jul 03 2013
Corrected and extended through a(21) by Robert G. Wilson v, Jul 09 2014
Entry revised by N. J. A. Sloane, Jan 02 2019, incorporating data from a later submission from Robert G. Wilson v
a(22)-a(25) from Michael S. Branicky, May 31 2025

A244916 Primes prime(k) such that 2^(k+1) + prime(k) is also prime.

Original entry on oeis.org

3, 31, 71, 97, 107, 277, 307, 641, 907, 967, 1009, 1447, 3463, 3527, 7757, 8167, 250867, 279047, 1107791, 1176671, 1538399, 1594909, 2450017
Offset: 1

Views

Author

Robert G. Wilson v, Jul 09 2014

Keywords

Crossrefs

Programs

  • Maple
    for i from 1 do
            p := ithprime(i) ;
            if isprime(p+2^(i+1)) then
                    printf("%d,\n",p) ;
            end if;
    end do: # R. J. Mathar, Jul 12 2014
  • Mathematica
    p = 2; lst = {}; While[p < 900000, If[ PrimeQ[ 2^(PrimePi@ p +1) + p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst
  • PARI
    lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip+1)+p), print1(p, ", ")); ip++;);} \\ Michel Marcus, Jul 12 2014

Extensions

a(19)-a(23) from Michael S. Branicky, May 31 2025
Showing 1-2 of 2 results.