A244914 Duplicate of A227126.
2, 3, 5, 11, 17, 167, 193, 197, 433, 4111, 9173, 42929, 95279, 98897, 139409
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
29 is in the sequence because 29 = prime(10) and 2^(10 - 1) + 29 = 512 + 29 = 541 is prime.
for i from 1 do p := ithprime(i) ; if isprime(p+2^(i-1)) then printf("%d,\n",p) ; end if; end do: # R. J. Mathar, Jul 12 2014
p = 2; lst = {}; While[p < 730001, If[ PrimeQ[ 2^(PrimePi@ p-1) + p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jul 09 2014 *)
lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip-1)+p), print1(p, ", ")); ip++;);} \\ Michel Marcus, Jul 12 2014
for i from 1 do p := ithprime(i) ; if isprime(2^(numtheory[pi](p-1))-p) then printf("%d,\n",p) ; end if; end do: # R. J. Mathar, Jul 11 2014
p = 2; lst = {}; While[p < 800001, If[ PrimeQ[ 2^(PrimePi@ p-1) - p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst n=1;Monitor[Parallelize[While[True,If[PrimeQ[2^(PrimePi[Prime[n]-1])-Prime[n]],Print[Prime[n]]];n++];n],n] (* J.W.L. (Jan) Eerland, Dec 08 2022 *)
is(n)=isprime(n) && isprime(2^primepi(n-1)-n) \\ Charles R Greathouse IV, Feb 25 2017
for i from 1 do p := ithprime(i) ; if isprime(p+2^(i+1)) then printf("%d,\n",p) ; end if; end do: # R. J. Mathar, Jul 12 2014
p = 2; lst = {}; While[p < 900000, If[ PrimeQ[ 2^(PrimePi@ p +1) + p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst
lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip+1)+p), print1(p, ", ")); ip++;);} \\ Michel Marcus, Jul 12 2014
Comments