cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244919 For odd prime p, largest k such that binomial(2p-1, p-1) is congruent to 1 modulo p^k.

Original entry on oeis.org

2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 2

Views

Author

Felix Fröhlich, Jul 08 2014

Keywords

Comments

Wolstenholme's theorem implies that k >= 3 for all p > 3. The prime p is a Wolstenholme prime if and only if k > 3. For the primes up to 10^9 this holds only for p = 16843 and p = 2124679, where in each case a(n) = 4 (i.e. a(1944) = 4 and a(157504) = 4).

Crossrefs

Programs

  • PARI
    forprime(p=3, 10^3, k=1; while(Mod(binomial(2*p-1, p-1), p^k)==1, j=k; k++); if(Mod(binomial(2*p-1, p-1), p^k)!=1, print1(j, ", ")))