A244919 For odd prime p, largest k such that binomial(2p-1, p-1) is congruent to 1 modulo p^k.
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 2
Keywords
Links
- R. J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arith., Volume 71, Issue 4 (1995), 381-389.
- R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp., 76 (2007), 2087-2094.
Programs
-
PARI
forprime(p=3, 10^3, k=1; while(Mod(binomial(2*p-1, p-1), p^k)==1, j=k; k++); if(Mod(binomial(2*p-1, p-1), p^k)!=1, print1(j, ", ")))
Comments