cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244974 Sum of numbers m <= n whose set of prime divisors is a subset of the set of prime divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 16, 8, 15, 13, 30, 12, 45, 14, 36, 33, 31, 18, 79, 20, 66, 41, 64, 24, 103, 31, 70, 40, 80, 30, 235, 32, 63, 84, 114, 73, 198, 38, 120, 92, 163, 42, 310, 44, 140, 130, 132, 48, 246, 57, 213, 108, 154, 54, 300, 97, 217, 116, 150, 60, 600, 62, 156, 180, 127, 109, 540, 68, 246
Offset: 1

Views

Author

Michael De Vlieger, Jul 08 2014

Keywords

Comments

a(n) = A000203(n) when n is prime or a perfect prime power (A000961). This is because all products of the prime divisor p in such numbers produce divisors.
a(n) > A000203(n) when n is composite and not a perfect prime power.

Examples

			For n = 4, A162306(4) = {1, 2, 4} and a(4) = 7.
For n = 5, A162306(5) = {1, 5} and a(5) = 6.
For n = 6, A162306(6) = {1, 2, 3, 4, 6} and a(6) = 16.
		

Crossrefs

a(n) = sum of terms of n-th row of triangle A162306(n,k).

Programs

  • Mathematica
    Table[Total@ Union[{1}, Function[d, Select[Range@ n, Union[d, First /@ FactorInteger@ #] == d &]][First /@ FactorInteger@ n]], {n, 68}] (* or *)
    Table[Sum[k (Floor[n^k/k] - Floor[(n^k - 1)/k]), {k, n}], {n, 68}] (* Michael De Vlieger, May 26 2016 *)
  • PARI
    a(n) = {summ = 0; spn = factor(n)[,1]~; for (m=1, n, spm = factor(m)[,1]~; if (setintersect(spm, spn) == spm, summ += m);); summ;} \\ Michel Marcus, Jul 17 2014

Formula

a(n) = Sum_{k=1..n} k*( floor(n^k/k)-floor((n^k - 1)/k) ). - Anthony Browne, May 25 2016
a(n) = Sum_{j=1..n} Sum_{i=j..gcd(n^j,j)} i. - Wesley Ivan Hurt, Apr 05 2021