cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244978 Decimal expansion of Pi/32.

Original entry on oeis.org

0, 9, 8, 1, 7, 4, 7, 7, 0, 4, 2, 4, 6, 8, 1, 0, 3, 8, 7, 0, 1, 9, 5, 7, 6, 0, 5, 7, 2, 7, 4, 8, 4, 4, 6, 5, 1, 3, 1, 1, 6, 1, 5, 4, 3, 7, 3, 0, 4, 7, 2, 0, 5, 6, 9, 0, 5, 4, 6, 7, 0, 1, 8, 5, 0, 9, 6, 1, 9, 2, 6, 2, 6, 9, 6, 4, 4, 4, 0, 3, 1, 2, 0, 7, 1, 2, 6, 0, 8, 8, 2, 9, 1, 9, 4, 1, 1, 5, 8, 3, 7, 4, 4, 4, 2, 1
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.0981747704246810387019576057274844651311615437304720569054670185096...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

Formula

Equals Integral_{x = 0..1} x^2/(1 + x^2)^3 dx.
Also equals beta(3/2, 1/2)/16, where 'beta' is Euler's beta function.
From Peter Bala, Oct 27 2019: (Start)
Equals Integral_{x = 0..1} x^4*sqrt(1 - x^2) dx = Integral_{x = 0..1} x^5*sqrt(1 - x^4) dx = Integral_{x = 0..1} x^7*sqrt(1 - x^16) dx.
Equals Integral_{x >= 0} x^4/(1 + x^2)^4 dx. (End)
From Amiram Eldar, Jul 13 2020: (Start)
Equals Integral_{x=0..oo} dx/(x^2 + 4)^2.
Equals Sum_{k>=1} sin(k)^3*cos(k)^3/k. (End)
From Peter Bala, Dec 08 2021: (Start)
Pi/32 = Sum_{n >= 1} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9)).
Applying Euler's series transformation to this alternating sum gives
Pi/32 = Sum_{n >= 1} 2^(n-3)*n*(n+1)/((2*n+3)*binomial(2*n+2, n+1)). (End)