A245021 Semiprimes whose digit sum is a perfect cube.
10, 26, 35, 62, 134, 143, 161, 206, 215, 305, 314, 323, 341, 413, 422, 611, 1007, 1043, 1115, 1133, 1142, 1205, 1214, 1241, 1313, 1322, 1403, 1502, 2033, 2042, 2051, 2105, 2123, 2231, 2321, 2402, 2501, 3005, 3113, 3131, 3401, 4022, 4031, 4103, 4121, 5102, 5111
Offset: 1
Examples
35 is in the sequence because 35 = 5 * 7 which is semiprime. Also, (3 + 5) = 8 = 2^3. 1043 is in the sequence because 1043 = 7 * 149 which is semiprime. Also, (1 + 0 + 4 + 3) = 8 = 2^3.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..1000
Programs
-
Maple
N:= 10000: # to get all terms up to N maxj:= floor((9*(1+ilog10(N)))^(1/3)): cubes:= {seq(j^3,j=1..maxj)}: filter:= proc(n) local s; if numtheory:-bigomega(n) <> 2 then return false fi; s:= convert(convert(n,base,10),`+`); member(s,cubes); end proc: select(filter, [$1..N]); # Robert Israel, Jul 10 2014
-
Mathematica
sppcQ[n_]:=PrimeOmega[n]==2&&IntegerQ[Surd[Total[IntegerDigits[n]],3]]; Select[Range[5200],sppcQ] (* Harvey P. Dale, Apr 07 2017 *)
Comments