A245049 Number A(n,k) of hybrid k-ary trees with n internal nodes; square array A(n,k), n>=0, k>=1, read by antidiagonals.
1, 1, 2, 1, 2, 3, 1, 2, 7, 5, 1, 2, 11, 31, 8, 1, 2, 15, 81, 154, 13, 1, 2, 19, 155, 684, 820, 21, 1, 2, 23, 253, 1854, 6257, 4575, 34, 1, 2, 27, 375, 3920, 24124, 60325, 26398, 55, 1, 2, 31, 521, 7138, 66221, 331575, 603641, 156233, 89, 1, 2, 35, 691, 11764, 148348, 1183077, 4736345, 6210059, 943174, 144
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, 2, ... 3, 7, 11, 15, 19, 23, 27, ... 5, 31, 81, 155, 253, 375, 521, ... 8, 154, 684, 1854, 3920, 7138, 11764, ... 13, 820, 6257, 24124, 66221, 148348, 290305, ... 21, 4575, 60325, 331575, 1183077, 3262975, 7585749, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235
Crossrefs
Programs
-
Maple
A:= (n, k)-> add(binomial((k-1)*n+i, i)* binomial((k-1)*n+i+1, n-i), i=0..n)/((k-1)*n+1): seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
-
Mathematica
A[n_, k_] := Sum[Binomial[(k-1)*n+i, i]*Binomial[(k-1)*n+i+1, n-i], {i, 0, n}]/((k-1)*n+1); Table[A[n, 1+d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)
Formula
A(n,k) = 1/((k-1)*n+1) * Sum_{i=0..n} C((k-1)*n+i,i)*C((k-1)*n+i+1,n-i).
A(n,k) = [x^n] ((1+x)/(1-x-x^2))^((k-1)*n+1) / ((k-1)*n+1).
G.f. for column k satisfies: A_k(x) = (1+x*A_k(x)^(k-1)) * (1+x*A_k(x)^k).