cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245058 Decimal expansion of the real part of Li_2(I), negated.

Original entry on oeis.org

2, 0, 5, 6, 1, 6, 7, 5, 8, 3, 5, 6, 0, 2, 8, 3, 0, 4, 5, 5, 9, 0, 5, 1, 8, 9, 5, 8, 3, 0, 7, 5, 3, 1, 4, 8, 6, 5, 2, 3, 6, 8, 7, 3, 7, 6, 5, 0, 8, 4, 9, 8, 0, 4, 7, 1, 6, 9, 4, 4, 7, 7, 8, 6, 7, 1, 2, 5, 0, 9, 3, 3, 8, 0, 0, 4, 0, 0, 1, 0, 9, 2, 2, 9, 2, 0, 3, 6, 1, 2, 5, 7, 7, 4, 6, 9, 8, 3, 8, 1, 6, 3, 0, 0, 0
Offset: 0

Views

Author

Robert G. Wilson v, Aug 21 2014

Keywords

Comments

This is the decimal expansion of the real part of the dilogarithm of the square root of -1. The imaginary part is Catalan's number (A006752).
5*Pi^2/24 = 10 * (this constant) equals the asymptotic mean of the abundancy index of the even numbers. - Amiram Eldar, May 12 2023

Examples

			0.2056167583560283045590518958307531486523687376508498047169447786712509338004...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Pi(R)^2/48; // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[ Re[ PolyLog[2, I]], 10, 111][[1]] (* or *) RealDigits[ Zeta[2]/8, 10, 111][[1]] (* or *) RealDigits[ Pi^2/48, 10, 111][[1]]
  • PARI
    zeta(2)/8 \\ Charles R Greathouse IV, Aug 27 2014
    
  • Sage
    (pi**2/48).n(200) # F. Chapoton, Mar 16 2020
    

Formula

Also equals -zeta(2)/8 = -Pi^2/48.
Also equals the Bessel moment Integral_{0..inf} x I_1(x) K_0(x)^2 K_1(x) dx. - Jean-François Alcover, Jun 05 2016
From Terry D. Grant, Sep 11 2016: (Start)
Equals Sum_{n>=0} (-1)^n/(2n+2)^2.
Equals (Sum_{n>=1} 1/(2n)^2)/2 = A222171/2. (End)
Equals Sum_{k>=1} A007949(k)/k^2. - Amiram Eldar, Jul 13 2020
Equals a tenth of integral_0^{pi/2} arccos[cos x/(1+2 cos x)]dx [Nahin]. - R. J. Mathar, May 22 2024
Equals Integral_{x>=0} x/(exp(2*x) + 1) dx. - Kritsada Moomuang, May 29 2025