cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245061 Prime numbers p such that p - primepi(p) is a square, where primepi is the prime counting function.

Original entry on oeis.org

2, 3, 37, 541, 647, 881, 1151, 1301, 1627, 2377, 3271, 5179, 5641, 10501, 11597, 11821, 18503, 20543, 23339, 31259, 35461, 38669, 39499, 42901, 43331, 44201, 45523, 51973, 53407, 67213, 67757, 70489, 72169, 77291, 98893, 99551, 128291, 139721, 145207, 150011
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Examples

			37 is in the sequence because primepi(37) = 12, and 37 - 12 = 5^2.
541 is in the sequence because primepi(541) = 100, and 541 - 100 = 21^2.
547 is not in the sequence because primepi(547) = 101, and 547 - 101 = 446, which is not a perfect square.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A245061:=n->`if`(type(sqrt(n-pi(n)),integer) and type(n,prime), n, NULL): seq(A245061(n), n=2..10^5); # Wesley Ivan Hurt, Jul 10 2014
  • Mathematica
    Select[Prime[Range[200]], IntegerQ[Sqrt[# - PrimePi[#]]] &] (* Alonso del Arte, Jul 11 2014 *)
  • PARI
    select(p->issquare(p-primepi(p)), primes(15000)) \\ Michel Marcus, Jul 11 2014
    
  • Python
    import sympy,gmpy2
    [sympy.prime(n) for n in range(1,10**6) if gmpy2.is_square(sympy.prime(n)-n)] # Chai Wah Wu, Jul 11 2014

Formula

a(n) = prime(A064370(n+1)). - Michel Marcus, Jul 11 2014

Extensions

More terms from Michel Marcus, Jul 11 2014