A245061 Prime numbers p such that p - primepi(p) is a square, where primepi is the prime counting function.
2, 3, 37, 541, 647, 881, 1151, 1301, 1627, 2377, 3271, 5179, 5641, 10501, 11597, 11821, 18503, 20543, 23339, 31259, 35461, 38669, 39499, 42901, 43331, 44201, 45523, 51973, 53407, 67213, 67757, 70489, 72169, 77291, 98893, 99551, 128291, 139721, 145207, 150011
Offset: 1
Keywords
Examples
37 is in the sequence because primepi(37) = 12, and 37 - 12 = 5^2. 541 is in the sequence because primepi(541) = 100, and 541 - 100 = 21^2. 547 is not in the sequence because primepi(547) = 101, and 547 - 101 = 446, which is not a perfect square.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..500
Programs
-
Maple
with(numtheory): A245061:=n->`if`(type(sqrt(n-pi(n)),integer) and type(n,prime), n, NULL): seq(A245061(n), n=2..10^5); # Wesley Ivan Hurt, Jul 10 2014
-
Mathematica
Select[Prime[Range[200]], IntegerQ[Sqrt[# - PrimePi[#]]] &] (* Alonso del Arte, Jul 11 2014 *)
-
PARI
select(p->issquare(p-primepi(p)), primes(15000)) \\ Michel Marcus, Jul 11 2014
-
Python
import sympy,gmpy2 [sympy.prime(n) for n in range(1,10**6) if gmpy2.is_square(sympy.prime(n)-n)] # Chai Wah Wu, Jul 11 2014
Formula
a(n) = prime(A064370(n+1)). - Michel Marcus, Jul 11 2014
Extensions
More terms from Michel Marcus, Jul 11 2014