cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245073 Decimal expansion of Integral_{x=0..Pi/2} (x^2/sin(x)) dx.

Original entry on oeis.org

1, 5, 4, 7, 9, 8, 2, 4, 0, 2, 1, 5, 7, 7, 4, 2, 3, 0, 4, 6, 5, 6, 0, 7, 6, 7, 6, 7, 7, 5, 3, 0, 2, 0, 6, 3, 2, 5, 5, 2, 2, 5, 6, 7, 7, 6, 9, 1, 3, 6, 1, 2, 0, 6, 5, 2, 5, 1, 4, 4, 1, 1, 6, 0, 6, 1, 3, 2, 8, 9, 1, 5, 8, 5, 3, 1, 4, 8, 6, 0, 6, 9, 3, 5, 5, 1, 1, 7, 0, 7, 2, 8, 2, 9, 3, 8, 1, 2, 5, 8, 5, 4, 5, 2, 8
Offset: 1

Views

Author

Jean-François Alcover, Jul 11 2014

Keywords

Examples

			1.547982402157742304656076767753020632552256776913612065251441160613289...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.7 Catalan's Constant, pp. 55, 57.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); L:=RiemannZeta();  2*Pi(R)*Catalan(R) - 7*Evaluate(L,3)/2; // G. C. Greubel, Aug 24 2018
  • Mathematica
    RealDigits[2*Pi*Catalan - 7*Zeta[3]/2, 10, 105] // First
    RealDigits[HypergeometricPFQ[{1,1,1,1},{3/2,3/2,2},1],10,100][[1]] (* Stefano Spezia, Nov 13 2024 *)
  • PARI
    default(realprecision, 100); 2*Pi*Catalan - 7*zeta(3)/2 \\ G. C. Greubel, Aug 24 2018
    

Formula

Equals 2*Pi*G - 7*zeta(3)/2, where G is Catalan's constant.
Also equals 4 * Integral_{x=0..1} (arctan(x)^2/x) dx.
From Stefano Spezia, Nov 13 2024: (Start)
Equals Sum_{k>=0} 2^(4*k)/((k + 1)*(2*k + 1)^2*binomial(2*k,k)^2) (see Finch at p. 55).
Equals hypergeom([1, 1, 1, 1], [3/2, 3/2, 2], 1). (End)