A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved.
0, 1, 2, 3, 4, 4, 6, 7, 8, 6, 10, 12, 12, 8, 14, 15, 16, 13, 18, 18, 20, 12, 22, 28, 24, 14, 26, 24, 28, 24, 30, 31, 32, 18, 34, 39, 36, 20, 38, 42, 40, 32, 42, 36, 44, 24, 46, 60, 48, 31, 50, 42, 52, 40, 54, 56, 56, 30, 58, 72, 60, 32, 62, 63, 64, 48
Offset: 0
Keywords
Examples
Illustration of initial terms: ---------------------------------------------------------------------- a(n) Diagram ---------------------------------------------------------------------- 0 _ 1 |_|\ _ 2 \ _| |\ _ 3 |_ _| | |\ _ 4 \ _ _|_| | |\ _ 4 |_ _| _| | | |\ _ 6 \ _ _| _| | | | |\ _ 7 |_ _ _| _|_| | | | |\ _ 8 \ _ _ _| _ _| | | | | |\ _ 6 |_ _ _| | _| | | | | | |\ _ 10 \ _ _ _| _| _|_| | | | | | |\ _ 12 |_ _ _ _| _| _ _| | | | | | | |\ _ 12 \ _ _ _ _| _| _ _| | | | | | | | |\ _ 8 |_ _ _ _| | _| _ _|_| | | | | | | | |\ _ 14 \ _ _ _ _| | _| | _ _| | | | | | | | | |\ _ 15 |_ _ _ _ _| |_ _| | _ _| | | | | | | | | | |\ _ 16 \ _ _ _ _ _| _ _|_| _ _|_| | | | | | | | | | |\ 13 |_ _ _ _ _| | _| _| _ _ _| | | | | | | | | | | 18 \ _ _ _ _ _| | _| _| _ _| | | | | | | | | | 18 |_ _ _ _ _ _| | _| | _ _|_| | | | | | | | 20 \ _ _ _ _ _ _| | _| | _ _ _| | | | | | | 12 |_ _ _ _ _ _| | _ _| _| | _ _ _| | | | | | 22 \ _ _ _ _ _ _| | _ _| _|_| _ _ _|_| | | | 28 |_ _ _ _ _ _ _| | _ _| _ _| | _ _ _| | | 24 \ _ _ _ _ _ _ _| | _| | _| | _ _ _| | 14 |_ _ _ _ _ _ _| | | _| _| _| | _ _ _| 26 \ _ _ _ _ _ _ _| | |_ _| _| _| | 24 |_ _ _ _ _ _ _ _| | _ _| _| _| 28 \ _ _ _ _ _ _ _ _| | _ _| _| 24 |_ _ _ _ _ _ _ _| | | _ _| 30 \ _ _ _ _ _ _ _ _| | | 31 |_ _ _ _ _ _ _ _ _| | 32 \ _ _ _ _ _ _ _ _ _| ... a(n) is the total area of the n-th set of symmetric regions in the diagram. . From _Omar E. Pol_, Aug 21 2015: (Start) The above structure contains a hidden pattern, simpler, as shown below: Level _ _ 1 _| | |_ 2 _| _|_ |_ 3 _| | | | |_ 4 _| _| | |_ |_ 5 _| | _|_ | |_ 6 _| _| | | | |_ |_ 7 _| | | | | | |_ 8 _| _| _| | |_ |_ |_ 9 _| | | _|_ | | |_ 10 _| _| | | | | | |_ |_ 11 _| | _| | | | |_ | |_ 12 _| _| | | | | | |_ |_ 13 _| | | _| | |_ | | |_ 14 _| _| _| | _|_ | |_ |_ |_ 15 _| | | | | | | | | | |_ 16 | | | | | | | | | | | ... The symmetric pattern emerges from the front view of the stepped pyramid. Note that starting from this diagram A000203 is obtained as follows: In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n. The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End) From _Omar E. Pol_, Dec 31 2016: (Start) Illustration of the top view of the pyramid with 16 levels: . n A000203 A237270 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 1 = 1 |_| | | | | | | | | | | | | | | | 2 3 = 3 |_ _|_| | | | | | | | | | | | | | 3 4 = 2 + 2 |_ _| _|_| | | | | | | | | | | | 4 7 = 7 |_ _ _| _|_| | | | | | | | | | 5 6 = 3 + 3 |_ _ _| _| _ _|_| | | | | | | | 6 12 = 12 |_ _ _ _| _| | _ _|_| | | | | | 7 8 = 4 + 4 |_ _ _ _| |_ _|_| _ _|_| | | | 8 15 = 15 |_ _ _ _ _| _| | _ _ _|_| | 9 13 = 5 + 3 + 5 |_ _ _ _ _| | _|_| | _ _ _| 10 18 = 9 + 9 |_ _ _ _ _ _| _ _| _| | 11 12 = 6 + 6 |_ _ _ _ _ _| | _| _| _| 12 28 = 28 |_ _ _ _ _ _ _| |_ _| _| 13 14 = 7 + 7 |_ _ _ _ _ _ _| | _ _| 14 24 = 12 + 12 |_ _ _ _ _ _ _ _| | 15 24 = 8 + 8 + 8 |_ _ _ _ _ _ _ _| | 16 31 = 31 |_ _ _ _ _ _ _ _ _| ... (End)
Links
- Robert Price, Table of n, a(n) for n = 0..20000
- Omar E. Pol, A pyramid related to the divisor function and other integers sequences
- Omar E. Pol, Diagram of the isosceles triangle A237593 before the 90-degree-zig-zag folding (rows: 1..28)
- Omar E. Pol, Perspective view of the pyramid (first 16 levels)
Crossrefs
Programs
-
Mathematica
Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *) Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* Michael De Vlieger, Dec 31 2016 *) With[{nn=70},Riffle[Range[0,nn,2],DivisorSigma[1,Range[nn/2]]]] (* Harvey P. Dale, Aug 05 2024 *)
Formula
a(2*n-1) + a(2n) = A224880(n).
Comments