A245096 Numbers whose squares become cubes if one of their digits is deleted.
4, 9, 10, 20, 30, 35, 46, 54, 96, 100, 200, 300, 325, 395, 411, 520, 800, 1000, 1470, 2000, 2448, 2700, 3000, 3144, 4000, 4209, 4633, 6400, 6947, 9000, 9051, 10000, 12500, 13719, 20000, 21600, 25300, 30000, 34300, 35000, 46000, 51200, 54000, 61632, 72900, 96000
Offset: 1
Examples
4^2 = 16 and (1)^1/3 = 1. 9^2 = 81 and (8)^1/3 = 2 or (1)^1/3 = 1. 10^2 = 100 and (00)^1/3 = 0. 3144^2 = 9884736 and (884736)^1/3 = 96.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A249853.
Programs
-
Maple
with(numtheory): P:=proc(q,h) local a,b,k,n; for n from 4 to q do a:=n^2; for k from 0 to ilog10(a) do b:=trunc(a/10^(k+1))*10^k+(a mod 10^k); if b=trunc(evalf((b)^(1/h)))^h then print(n); break; fi; od; od; end: P(10^9,3);
-
Mathematica
f[n_] := !MissingQ@SelectFirst[Delete[IntegerDigits[n^2], #] & /@ Range[IntegerLength[n^2]], IntegerQ@CubeRoot@FromDigits@# &]; Select[Range[4, 1000], f] (* Davin Park, Dec 30 2016 *) scddQ[x_]:=AnyTrue[Table[FromDigits[Delete[IntegerDigits[x^2],n]],{n, IntegerLength[ x^2]}],IntegerQ[CubeRoot[#]]&]; Select[Range[100000], scddQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 02 2018 *)
Comments