cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245111 G.f.: A(x,y) = Sum_{n>=0} exp(-y/(1-n*x)) * y^n/(1-n*x)^n / n!.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 12, 10, 0, 1, 35, 90, 35, 0, 1, 90, 525, 560, 126, 0, 1, 217, 2520, 5460, 3150, 462, 0, 1, 504, 10836, 42000, 46200, 16632, 1716, 0, 1, 1143, 43470, 280665, 519750, 342342, 84084, 6435, 0, 1, 2550, 166375, 1709400, 4969965, 5297292, 2312310, 411840, 24310
Offset: 0

Views

Author

Paul D. Hanna, Jul 12 2014

Keywords

Comments

Compare g.f. to: 1/(1-x*y) = Sum_{n>=0} exp(-y*(1+n*x)) * y^n*(1+n*x)^n / n!.
Row sums equal A245110.
Antidiagonal sums: A218667.
Main diagonal is: C(2*n-1,n) (A001700).
Secondary diagonal: C(2*n-1,n)*n^2 (A002544).

Examples

			G.f.: A(x,y) = 1 + x*y + x^2*(y + 3*y^2)
+ x^3*(y + 12*y^2 + 10*y^3)
+ x^4*(y + 35*y^2 + 90*y^3 + 35*y^4)
+ x^5*(y + 90*y^2 + 525*y^3 + 560*y^4 + 126*y^5)
+ x^6*(y + 217*y^2 + 2520*y^3 + 5460*y^4 + 3150*y^5 + 462*y^6) +...
where
A(x,y) = exp(-y) + exp(-y/(1-x))*y/(1-x) + (exp(-y/(1-2*x))*y^2/(1-2*x)^2)/2!
+ (exp(-y/(1-3*x))*y^3/(1-3*x)^3)/3! + (exp(-y/(1-4*x))*y^4/(1-4*x)^4)/4!
+ (exp(-y/(1-5*x))*y^5/(1-5*x)^5)/5! + (exp(-y/(1-6*x))*y^6/(1-6*x)^6)/6!
+ (exp(-y/(1-7*x))*y^7/(1-7*x)^7)/7! + (exp(-y/(1-8*x))*y^8/(1-8*x)^8)/8! +...
simplifies to a power series with only integer coefficients of x^n*y^k.
Triangle begins:
1;
0, 1;
0, 1, 3;
0, 1, 12, 10;
0, 1, 35, 90, 35;
0, 1, 90, 525, 560, 126;
0, 1, 217, 2520, 5460, 3150, 462;
0, 1, 504, 10836, 42000, 46200, 16632, 1716;
0, 1, 1143, 43470, 280665, 519750, 342342, 84084, 6435;
0, 1, 2550, 166375, 1709400, 4969965, 5297292, 2312310, 411840, 24310;
0, 1, 5621, 615780, 9754030, 42567525, 68549481, 47087040, 14586000, 1969110, 92378; ...
where T(n,k) = A048993(n,k) * C(n+k-1, k-1) for k>0.
		

Crossrefs

Programs

  • PARI
    /* From definition: */
    {T(n,k)=local(A=1+x*y); A=sum(k=0, n, 1/(1-k*x+x*O(x^n))^k*y^k/k!*exp(-y/(1-k*x+x*O(x^n))+y*O(y^n))); polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0, 10, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* From T(n,k) = Stirling2(n, k) * C(n+k-1, k-1) */
    {Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!}
    {T(n,k)=if(k==0,0^n,Stirling2(n, k) * binomial(n+k-1, k-1))}
    for(n=0, 10, for(k=0,n, print1(T(n,k),", "));print(""))

Formula

T(n,k) = Stirling2(n, k) * binomial(n+k-1, k-1) for k>0, where Stirling2(n,k) = A048993(n,k).