cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245233 Number of permutations generated by passing an ordered sequence of length n through a stack of depth 2 and an infinite stack in series.

Original entry on oeis.org

1, 1, 2, 6, 24, 114, 592, 3216, 17904, 101198, 578208, 3332136, 19343408, 113017332, 664168160, 3923729280, 23291913440, 138872375958, 831321465408, 4994806458040, 30111586314800, 182094123983660, 1104331746746208, 6715050373394528, 40931670125150624, 250065092876686924, 1530948705125205952, 9391164635349135184
Offset: 0

Views

Author

Murray Elder, Jul 14 2014

Keywords

Examples

			For n=5 all but 6 permutations can be generated: 51234, 51243, 51423, 52134, 52143, 52413.
		

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, n!,
          (8*(n-2)*(10*n^6+21*n^5-455*n^4-1143*n^3+5227*n^2
           +10026*n-1926)*a(n-1) -(400*n^7-1120*n^6-20520*n^5
           +56848*n^4+317984*n^3-1096896*n^2+180600*n+939024)*a(n-2)
           +(320*n^7-3168*n^6-15520*n^5+198432*n^4+74096*n^3
           -3892992*n^2+8591088*n-3756096)*a(n-3) +(2560*n^7
           -13824*n^6-108624*n^5+666320*n^4+1015472*n^3-10736624*n^2
           +16022304*n-2062944)*a(n-4) -32*(4*n-15)*(4*n-17)*
           (2*n-9)*(5*n^4+18*n^3-189*n^2-522*n+2248)*a(n-5)) /
          ((n-1)*(n+3)*(n+1)*(5*n^4-2*n^3-213*n^2-110*n+2568)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 14 2014
  • Mathematica
    q = (1-2*x-Sqrt[1-4*x])/(2*x); gf = ((1+q)*(1+5*q-q^2-q^3-(1-q)*Sqrt[(1-q^2)*(1-4*q-q^2)] ))/(8*q); CoefficientList[Series[gf, {x, 0, 40}], x] (* Jean-François Alcover, Apr 09 2015, after Joerg Arndt *)
  • PARI
    N=66; x='x+O('x^N);
    q=(1-2*x-sqrt(1-4*x))/(2*x);
    gf=((1+q)*(1+5*q-q^2-q^3-(1-q)*sqrt((1-q^2)*(1-4*q-q^2))))/(8*q);
    Vec(gf)
    \\ Joerg Arndt, Jul 17 2014

Formula

G.f.: ((1+q)*(1+5*q-q^2-q^3-(1-q)*sqrt((1-q^2)*(1-4*q-q^2))))/(8*q) with q = (1-2*z-sqrt(1-4*z))/(2*z).
a(n) ~ (sqrt(5)+3) * sqrt(85-38*sqrt(5)) * 2^(n-3/2) * (1+sqrt(5))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 15 2014
Equivalently, a(n) ~ 5^(1/4) * 2^(2*n - 1/2) * phi^(n - 5/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021