A245233 Number of permutations generated by passing an ordered sequence of length n through a stack of depth 2 and an infinite stack in series.
1, 1, 2, 6, 24, 114, 592, 3216, 17904, 101198, 578208, 3332136, 19343408, 113017332, 664168160, 3923729280, 23291913440, 138872375958, 831321465408, 4994806458040, 30111586314800, 182094123983660, 1104331746746208, 6715050373394528, 40931670125150624, 250065092876686924, 1530948705125205952, 9391164635349135184
Offset: 0
Keywords
Examples
For n=5 all but 6 permutations can be generated: 51234, 51243, 51423, 52134, 52143, 52413.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. Elder, Permutations generated by a stack of depth 2 and an infinite stack in series, Electron. J. Combin, 13(1) (2006), R68.
- M. Elder, G. Lee, A. Rechnitzer, Permutations generated by a depth 2 and infinite stack in series are algebraic, arXiv:1407.4248 [math.CO], 2014. Electronic Journal of Combinatorics 22(1) (2015), #P2.16.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<5, n!, (8*(n-2)*(10*n^6+21*n^5-455*n^4-1143*n^3+5227*n^2 +10026*n-1926)*a(n-1) -(400*n^7-1120*n^6-20520*n^5 +56848*n^4+317984*n^3-1096896*n^2+180600*n+939024)*a(n-2) +(320*n^7-3168*n^6-15520*n^5+198432*n^4+74096*n^3 -3892992*n^2+8591088*n-3756096)*a(n-3) +(2560*n^7 -13824*n^6-108624*n^5+666320*n^4+1015472*n^3-10736624*n^2 +16022304*n-2062944)*a(n-4) -32*(4*n-15)*(4*n-17)* (2*n-9)*(5*n^4+18*n^3-189*n^2-522*n+2248)*a(n-5)) / ((n-1)*(n+3)*(n+1)*(5*n^4-2*n^3-213*n^2-110*n+2568))) end: seq(a(n), n=0..40); # Alois P. Heinz, Jul 14 2014
-
Mathematica
q = (1-2*x-Sqrt[1-4*x])/(2*x); gf = ((1+q)*(1+5*q-q^2-q^3-(1-q)*Sqrt[(1-q^2)*(1-4*q-q^2)] ))/(8*q); CoefficientList[Series[gf, {x, 0, 40}], x] (* Jean-François Alcover, Apr 09 2015, after Joerg Arndt *)
-
PARI
N=66; x='x+O('x^N); q=(1-2*x-sqrt(1-4*x))/(2*x); gf=((1+q)*(1+5*q-q^2-q^3-(1-q)*sqrt((1-q^2)*(1-4*q-q^2))))/(8*q); Vec(gf) \\ Joerg Arndt, Jul 17 2014
Formula
G.f.: ((1+q)*(1+5*q-q^2-q^3-(1-q)*sqrt((1-q^2)*(1-4*q-q^2))))/(8*q) with q = (1-2*z-sqrt(1-4*z))/(2*z).
a(n) ~ (sqrt(5)+3) * sqrt(85-38*sqrt(5)) * 2^(n-3/2) * (1+sqrt(5))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 15 2014
Equivalently, a(n) ~ 5^(1/4) * 2^(2*n - 1/2) * phi^(n - 5/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021