cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Murray Elder

Murray Elder's wiki page.

Murray Elder has authored 16 sequences. Here are the ten most recent ones:

A337179 Number of geodetic graphs with n unlabeled vertices.

Original entry on oeis.org

1, 1, 2, 4, 10, 23, 66, 185, 586, 1880, 6360, 21975, 78230, 283087, 1043329, 3895505, 14726263, 56234210, 216719056, 841857211, 3293753840, 12969219563
Offset: 1

Author

John Cu and Murray Elder, Jan 28 2021

Keywords

Comments

A graph is geodetic if each pair of vertices is joined by a unique shortest path. To obtain this sequence, non-isomorphic graphs were generated using Brendan McKay's nauty program, then the geodetic property is checked on this output.

Examples

			For n=4 there are a(4)=4 geodetic graphs: a triangle with another edge attached to one vertex, an edge path of length 3, a tripod of 3 edges joined at a common vertex, and a complete graph on 4 vertices.
                             o
      o               o     /|\
     / \              |    o-|-o
  o-o---o, o-o-o-o, o-o-o,  \|/
                             o
		

Crossrefs

Programs

Extensions

a(12)-a(22) from Florian Stober and Armin Weiß added by Murray Elder, Nov 14 2023

A337178 Number of biconnected geodetic graphs with n unlabeled vertices.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 3, 4, 3, 1, 9, 2, 4, 8, 6, 5, 13, 3, 13, 19, 11, 3, 32
Offset: 1

Author

John Cu and Murray Elder, Jan 28 2021

Keywords

Comments

A graph is geodetic if each pair of vertices is joined by a unique shortest path. A vertex v of a connected graph G is a cut vertex if G-v is disconnected. A connected graph G is biconnected if it has no cut vertices. To obtain this sequence, non-isomorphic (biconnected) graphs were generated using Brendan McKay's nauty program, then the geodetic property was checked on this output.

Examples

			For n=5 there are exactly a(5)=2 biconnected geodetic graphs: a 5-cycle and the complete graph on 5 vertices.
		

Crossrefs

Extensions

a(12)-a(25) from Florian Stober and Armin Weiß added by Murray Elder, Nov 14 2023

A246877 Cogrowth sequence for Richard Thompson's group F with the standard generating set x_0, x_1.

Original entry on oeis.org

20, 64, 336, 1160, 5896, 24652, 117628, 531136, 2559552, 12142320, 59416808, 290915560, 1449601452, 7269071976, 36877764000, 188484835300, 972003964976, 5049059855636, 26423287218612, 139205945578944
Offset: 5

Author

Murray Elder, Sep 06 2014

Keywords

Comments

a(n) is the number of reduced words in {x_0,x_0^{-1},x_1,x_1^{-1}}^* of length 2*n equal to the identity in F.

Examples

			The length of the shortest relation in the group presentation is 10, there are 20 distinct cyclic permutations of this word and its inverse, and each one is a reduced trivial word of length 2*5, so a(5)=20.
		

A245233 Number of permutations generated by passing an ordered sequence of length n through a stack of depth 2 and an infinite stack in series.

Original entry on oeis.org

1, 1, 2, 6, 24, 114, 592, 3216, 17904, 101198, 578208, 3332136, 19343408, 113017332, 664168160, 3923729280, 23291913440, 138872375958, 831321465408, 4994806458040, 30111586314800, 182094123983660, 1104331746746208, 6715050373394528, 40931670125150624, 250065092876686924, 1530948705125205952, 9391164635349135184
Offset: 0

Author

Murray Elder, Jul 14 2014

Keywords

Examples

			For n=5 all but 6 permutations can be generated: 51234, 51243, 51423, 52134, 52143, 52413.
		

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, n!,
          (8*(n-2)*(10*n^6+21*n^5-455*n^4-1143*n^3+5227*n^2
           +10026*n-1926)*a(n-1) -(400*n^7-1120*n^6-20520*n^5
           +56848*n^4+317984*n^3-1096896*n^2+180600*n+939024)*a(n-2)
           +(320*n^7-3168*n^6-15520*n^5+198432*n^4+74096*n^3
           -3892992*n^2+8591088*n-3756096)*a(n-3) +(2560*n^7
           -13824*n^6-108624*n^5+666320*n^4+1015472*n^3-10736624*n^2
           +16022304*n-2062944)*a(n-4) -32*(4*n-15)*(4*n-17)*
           (2*n-9)*(5*n^4+18*n^3-189*n^2-522*n+2248)*a(n-5)) /
          ((n-1)*(n+3)*(n+1)*(5*n^4-2*n^3-213*n^2-110*n+2568)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 14 2014
  • Mathematica
    q = (1-2*x-Sqrt[1-4*x])/(2*x); gf = ((1+q)*(1+5*q-q^2-q^3-(1-q)*Sqrt[(1-q^2)*(1-4*q-q^2)] ))/(8*q); CoefficientList[Series[gf, {x, 0, 40}], x] (* Jean-François Alcover, Apr 09 2015, after Joerg Arndt *)
  • PARI
    N=66; x='x+O('x^N);
    q=(1-2*x-sqrt(1-4*x))/(2*x);
    gf=((1+q)*(1+5*q-q^2-q^3-(1-q)*sqrt((1-q^2)*(1-4*q-q^2))))/(8*q);
    Vec(gf)
    \\ Joerg Arndt, Jul 17 2014

Formula

G.f.: ((1+q)*(1+5*q-q^2-q^3-(1-q)*sqrt((1-q^2)*(1-4*q-q^2))))/(8*q) with q = (1-2*z-sqrt(1-4*z))/(2*z).
a(n) ~ (sqrt(5)+3) * sqrt(85-38*sqrt(5)) * 2^(n-3/2) * (1+sqrt(5))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 15 2014
Equivalently, a(n) ~ 5^(1/4) * 2^(2*n - 1/2) * phi^(n - 5/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021

A229652 Cogrowth function of the group Baumslag-Solitar(10,10).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275660, 211823800, 2240795848, 23951289564, 258255473032, 2805534386256, 30675481454184, 337306578693652, 3727580774618060, 41376921517941032, 461122691909043112, 5157400529078643552
Offset: 0

Author

Murray Elder, Sep 28 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(10,10)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229651 Cogrowth function of the group Baumslag-Solitar(9,9).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275660, 211823800, 2240795888, 23951292204, 258255572584, 2805537209648, 30675548482880, 337307986673572, 3727607821613388, 41377406950962504, 461130952671387592, 5157535231753964268
Offset: 0

Author

Murray Elder, Sep 28 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(9,9)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229650 Cogrowth function of the group Baumslag-Solitar(8,8).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275660, 211823836, 2240798048, 23951367224, 258257552968, 2805581350056, 30676425237024, 337324008602512, 3727882769574860, 41381900166952348, 461201577710442388, 5158610797198820800
Offset: 0

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(8,8)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229649 Cogrowth function of the group Baumslag-Solitar(7,7).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195352, 1970896, 20275692, 211825564, 2240852928, 23952708696, 258285519688, 2806105225928, 30685515254240, 337472968923532, 3730218568024236, 41417273400310152, 461722437389957236, 5166105817092273412
Offset: 0

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(7,7)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229648 Cogrowth function of the group Baumslag-Solitar(6,6).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195352, 1970924, 20277036, 211864264, 2241723728, 23969620844, 258583473640, 2811005437348, 30762114003572, 338624821158892, 3747021722921964, 41656518905688504, 465062224305678280, 5211973807553021868
Offset: 0

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(6,6)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.

A229647 Cogrowth function of the group Baumslag-Solitar(5,5).

Original entry on oeis.org

1, 4, 28, 232, 2092, 19864, 195376, 1971932, 20303084, 212400232, 2251379688, 24129199208, 261067326544, 2848016992032, 31295785633532, 346126420439512, 3850363854970476, 43057199315715676, 483795646775017312, 5459770924922887392
Offset: 0

Author

Murray Elder, Sep 27 2013

Keywords

Comments

a(n) is the number of words of length 2n in the letters a,a^{-1},t,t^{-1} that equal the identity of the group BS(5,5)=.

Examples

			For n=1 there are 4 words of length 2 equal to the identity: aa^{-1}, a^{-1}a, tt^{-1}, t^{-1}t.
		

Crossrefs

The cogrowth sequences for BS(N,N) for N = 1..10 are A002894, A229644, A229645, A229646, A229647, A229648, A229649, A229650, A229651, A229652.