A245265 E.g.f. satisfies: A(x) = exp(x/(1-x*A(x)^4)).
1, 1, 3, 37, 649, 15461, 471571, 17456041, 760880625, 38178439849, 2167446089251, 137359883836781, 9612722107574521, 736277501363180557, 61265207586681046131, 5503291392884323494961, 530778414439201798454881, 54706967800114521799571921, 6000952913613549583603208515
Offset: 0
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 37*x^3/3! + 649*x^4/4! + 15461*x^5/5! + 471571*x^6/6! + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Vaclav Kotesovec, Asymptotic of sequences A161630, A212722, A212917 and A245265
Programs
-
Mathematica
Table[Sum[n! * (1 + 4*(n-k))^(k-1)/k! * Binomial[n-1,n-k],{k,0,n}],{n,0,20}]
-
PARI
for(n=0,30, print1(sum(k=0,n, n!*(1 + 4*(n-k))^(k-1)/k!*binomial(n-1,n-k)), ", ")) \\ G. C. Greubel, Nov 17 2017
Formula
a(n) = Sum_{k=0..n} n! * (1 + 4*(n-k))^(k-1)/k! * C(n-1,n-k).
a(n) ~ n^(n-1) * (1+2*LambertW(1))^(n+1/2) / (exp(n) * (LambertW(1))^(2*n) * (4*sqrt(1+LambertW(1)))). - Vaclav Kotesovec, Jul 15 2014
Comments