cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245282 G.f.: Sum_{n>=1} Fibonacci(n+1) * x^n / (1 - x^n).

Original entry on oeis.org

1, 3, 4, 8, 9, 19, 22, 42, 59, 100, 145, 257, 378, 634, 999, 1639, 2585, 4255, 6766, 11051, 17736, 28804, 46369, 75316, 121402, 196798, 317870, 514868, 832041, 1347372, 2178310, 3526217, 5703035, 9230052, 14930382, 24162310, 39088170, 63252754, 102334536, 165591226, 267914297
Offset: 1

Views

Author

Paul D. Hanna, Aug 21 2014

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 4*x^3 + 8*x^4 + 9*x^5 + 19*x^6 + 22*x^7 +...
where by definition
A(x) = 1*x/(1-x) + 2*x^2/(1-x^2) + 3*x^3/(1-x^3) + 5*x^4/(1-x^4) + 8*x^5/(1-x^5) + 13*x^6/(1-x^6) + 21*x^7/(1-x^7) + 34*x^8/(1-x^8) + 55*x^9/(1-x^9) + 89*x^10/(1-x^10) + 144*x^11/(1-x^11) +...+ Fibonacci(n+1)*x^n/(1-x^n) +...
The g.f. is also given by the series identity:
A(x) = x*(1+x)/(1-x-x^2) + x^2*(1+x^2)/(1-x^2-x^4) + x^3*(1+x^3)/(1-x^3-x^6) + x^4*(1+x^4)/(1-x^4-x^8) + x^5*(1+x^5)/(1-x^5-x^10) + x^6*(1+x^6)/(1-x^6-x^12) + x^7*(1+x^7)/(1-x^7-x^14) +...+ x^n*(1+x^n)/(1-x^n-x^(2*n)) +...
And also we have the series:
A(x) = x*(1 + x) + x^2*((1+x)^2 + (1+x^2)) + x^3*((1+x)^3 + (1+x^3))
+ x^4*((1+x)^4 + (1+x^2)^2 + (1+x^4)) + x^5*((1+x)^5 + (1+x^5))
+ x^6*((1+x)^6 + (1+x^2)^3 + (1+x^3)^2 + (1+x^6))
+ x^7*((1+x)^7 + (1+x^7))
+ x^8*((1+x)^8 + (1+x^2)^4 + (1+x^4)^2 + (1+x^8))
+ x^9*((1+x)^9 + (1+x^3)^3 + (1+x^9))
+ x^10*((1+x)^10 + (1+x^2)^5 + (1+x^5)^2 + (1+x^10))
+ x^11*((1+x)^11 + (1+x^11))
+ x^12*((1+x)^12 + (1+x^2)^6 + (1+x^3)^4 + (1+x^4)^3 + (1+x^6)^2 + (1+x^12))
+...+ x^n * Sum_{d|n} (1 + x^d)^(n/d) +...
or, more explicitly,
A(x) = x*(1 + x) + x^2*(2 + 2*x + 2*x^2) + x^3*(2 + 3*x + 3*x^2 + 2*x^3)
+ x^4*(3 + 4*x + 8*x^2 + 4*x^3 + 3*x^4)
+ x^5*(2 + 5*x + 10*x^2 + 10*x^3 + 5*x^4 + 2*x^5)
+ x^6*(4 + 6*x + 18*x^2 + 22*x^3 + 18*x^4 + 6*x^5 + 4*x^6)
+ x^7*(2 + 7*x + 21*x^2 + 35*x^3 + 35*x^4 + 21*x^5 + 7*x^6 + 2*x^7)
+ x^8*(4 + 8*x + 32*x^2 + 56*x^3 + 78*x^4 + 56*x^5 + 32*x^6 + 8*x^7 + 4*x^8)
+ x^9*(3 + 9*x + 36*x^2 + 87*x^3 + 126*x^4 + 126*x^5 + 87*x^6 + 36*x^7 + 9*x^8 + 3*x^9)
+ x^10*(4 + 10*x + 50*x^2 + 120*x^3 + 220*x^4 + 254*x^5 + 220*x^6 + 120*x^7 + 50*x^8 + 10*x^9 + 4*x^10)
+ x^11*(2 + 11*x + 55*x^2 + 165*x^3 + 330*x^4 + 462*x^5 + 462*x^6 + 330*x^7 + 165*x^8 + 55*x^9 + 11*x^10 + 2*x^11)
+ x^12*(6 + 12*x + 72*x^2 + 224*x^3 + 513*x^4 + 792*x^5 + 952*x^6 + 792*x^7 + 513*x^8 + 224*x^9 + 72*x^10 + 12*x^11 + 6*x^12) + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(combinat[fibonacci](d+1), d in divisors(n)), n=1..60); # Ridouane Oudra, Apr 10 2025
  • PARI
    {a(n)=polcoeff(sum(m=1, n, fibonacci(m+1)*x^m/(1-x^m +x*O(x^n))), n)}
    for(n=1,50, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=1, n, x^m*(1+x^m)/(1-x^m-x^(2*m) +x*O(x^n)) ), n)}
    for(n=1, 50, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=x+x^2);A=sum(m=1,n,x^m*sumdiv(m,d,(1 + x^(m/d) +x*O(x^n))^d) );polcoeff(A,n)}
    for(n=1,50,print1(a(n),", "))

Formula

G.f.: Sum_{n>=1} x^n * (1 + x^n) / (1 - x^n - x^(2*n)).
G.f.: Sum_{n>=1} x^n * Sum_{d|n} (1 + x^d)^(n/d).
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n+1). - Vaclav Kotesovec, Aug 22 2014
a(n) = Sum_{d|n} Fibonacci(d+1). - Ridouane Oudra, Apr 10 2025