A034729
a(n) = Sum_{ k, k|n } 2^(k-1).
Original entry on oeis.org
1, 3, 5, 11, 17, 39, 65, 139, 261, 531, 1025, 2095, 4097, 8259, 16405, 32907, 65537, 131367, 262145, 524827, 1048645, 2098179, 4194305, 8390831, 16777233, 33558531, 67109125, 134225995, 268435457, 536887863, 1073741825, 2147516555, 4294968325, 8590000131
Offset: 1
From _Gus Wiseman_, Sep 16 2018: (Start)
The a(4) = 11 constant multiset partitions:
(1)(1)(1)(1)
(11)(11)
(12)(12)
(1111)
(1222)
(1122)
(1112)
(1233)
(1223)
(1123)
(1234)
(End)
-
A034729:= func< n | (&+[2^(d-1): d in Divisors(n)]) >;
[A034729(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
-
seq(add(2^(k-1),k=numtheory:-divisors(n)), n = 1 .. 100); # Robert Israel, Aug 22 2014
-
Rest[CoefficientList[Series[Sum[x^k/(1-2*x^k),{k,1,30}],{x,0,30}],x]] (* Vaclav Kotesovec, Sep 08 2014 *)
-
A034729(n) = sumdiv(n,k,2^(k-1)) \\ Michael B. Porter, Mar 11 2010
-
{a(n)=polcoeff(sum(m=1,n,2^(m-1)*x^m/(1-x^m +x*O(x^n))),n)}
for(n=1,40,print1(a(n),", ")) \\ Paul D. Hanna, Aug 21 2014
-
{a(n)=local(A=x+x^2);A=sum(m=1,n,x^m*sumdiv(m,d,1/(1 - x^(m/d) +x*O(x^n))^d) );polcoeff(A,n)}
for(n=1,40,print1(a(n),", ")) \\ Paul D. Hanna, Aug 21 2014
-
from sympy import divisors
def A034729(n): return sum(1<<(d-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jul 15 2022
-
def A034729(n): return sum(2^(k-1) for k in (1..n) if (k).divides(n))
[A034729(n) for n in range(1,41)] # G. C. Greubel, Jun 26 2024
A007435
Inverse Moebius transform of Fibonacci numbers 1,1,2,3,5,8,...
Original entry on oeis.org
1, 2, 3, 5, 6, 12, 14, 26, 37, 62, 90, 159, 234, 392, 618, 1013, 1598, 2630, 4182, 6830, 10962, 17802, 28658, 46548, 75031, 121628, 196455, 318206, 514230, 832722, 1346270, 2179322, 3524670, 5704486, 9227484, 14933129, 24157818, 39092352, 63246222, 102341006
Offset: 1
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 12*x^6 + 14*x^7 + 26*x^8 + 37*x^9 + 62*x^10 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
with(numtheory): seq(add(combinat[fibonacci](d), d in divisors(n)), n=1..60); # Ridouane Oudra, Apr 12 2025
-
Table[Plus @@ Map[Function[d, Fibonacci[d]], Divisors[n]], {n, 100}] (* T. D. Noe, Aug 14 2012 *)
a[n_] := DivisorSum[n, Fibonacci]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *)
-
{a(n) = if( n<1, 0, sumdiv( n, k, fibonacci(k)))} /* Michael Somos, Apr 15 2012 */
A108046
Inverse Moebius transform of Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, ...
Original entry on oeis.org
0, 1, 1, 3, 3, 7, 8, 16, 22, 38, 55, 98, 144, 242, 381, 626, 987, 1625, 2584, 4221, 6774, 11002, 17711, 28768, 46371, 75170, 121415, 196662, 317811, 514650, 832040, 1346895, 2178365, 3525566, 5702898, 9229181, 14930352, 24160402, 39088314, 63250220, 102334155
Offset: 1
a(4)=3 because the divisors of 4 are 1,2,4 and the first, second and fourth Fibonacci numbers are 0, 1 and 2, respectively, having sum 3.
-
with(combinat): with(numtheory): f:=n->fibonacci(n-1): g:=proc(n) local div: div:=divisors(n): sum(f(div[j]),j=1..tau(n)) end: seq(g(n),n=1..45);
-
a[n_] := DivisorSum[n, Fibonacci[#-1]&]; Array[a, 40] (* Jean-François Alcover, Dec 17 2015 *)
-
a(n)=if(n<1,1,sumdiv(n,d,fibonacci(d-1))); /* Joerg Arndt, Aug 14 2012 */
-
from sympy import fibonacci, divisors
def a(n): return 1 if n<1 else sum([fibonacci(d - 1) for d in divisors(n)]) # Indranil Ghosh, May 23 2017
A256272
G.f.: Sum_{n>=1} Pell(n+1) * x^n / (1 - x^n), where Pell(n) = A000129(n).
Original entry on oeis.org
2, 7, 14, 36, 72, 188, 410, 1021, 2392, 5818, 13862, 33678, 80784, 195440, 470916, 1137710, 2744212, 6627675, 15994430, 38619812, 93222780, 225072548, 543339722, 1311772784, 3166816034, 7645450834, 18457558444, 44560677618, 107578520352, 259717999680, 627013566050, 1513745792655, 3654502889812
Offset: 1
G.f.: A(x) = 2*x + 7*x^2 + 14*x^3 + 36*x^4 + 72*x^5 + 188*x^6 +...
where by definition
A(x) = 2*x/(1-x) + 5*x^2/(1-x^2) + 12*x^3/(1-x^3) + 29*x^4/(1-x^4) + 70*x^5/(1-x^5) + 169*x^6/(1-x^6) + 408*x^7/(1-x^7) + 985*x^8/(1-x^8) + 2378*x^9/(1-x^9) + 5741*x^10/(1-x^10) +...+ Pell(n+1)*x^n/(1-x^n) +...
The g.f. is also given by the series identity:
A(x) = x*(2+x)/(1-2*x-x^2) + x^2*(2+x^2)/(1-2*x^2-x^4) + x^3*(2+x^3)/(1-2*x^3-x^6) + x^4*(2+x^4)/(1-2*x^4-x^8) + x^5*(2+x^5)/(1-2*x^5-x^10) + x^6*(2+x^6)/(1-2*x^6-x^12) + x^7*(2+x^7)/(1-2*x^7-x^14) +...+ x^n*(1+x^n)/(1-x^n-x^(2*n)) +...
And also we have the series:
A(x) = x*(2 + x) + x^2*((2+x)^2 + (2+x^2)) + x^3*((2+x)^3 + (2+x^3))
+ x^4*((2+x)^4 + (2+x^2)^2 + (2+x^4)) + x^5*((2+x)^5 + (2+x^5))
+ x^6*((2+x)^6 + (2+x^2)^3 + (2+x^3)^2 + (2+x^6))
+ x^7*((2+x)^7 + (2+x^7))
+ x^8*((2+x)^8 + (2+x^2)^4 + (2+x^4)^2 + (2+x^8))
+ x^9*((2+x)^9 + (2+x^3)^3 + (2+x^9))
+ x^10*((2+x)^10 + (2+x^2)^5 + (2+x^5)^2 + (2+x^10))
+ x^11*((2+x)^11 + (2+x^11))
+ x^12*((2+x)^12 + (2+x^2)^6 + (2+x^3)^4 + (2+x^4)^3 + (2+x^6)^2 + (2+x^12))
+...+ x^n * Sum_{d|n} (2 + x^d)^(n/d) +...
or, more explicitly,
A(x) = x*(2 + x) + x^2*(6 + 4*x + 2*x^2)
+ x^3*(10 + 12*x + 6*x^2 + 2*x^3)
+ x^4*(22 + 32*x + 28*x^2 + 8*x^3 + 3*x^4)
+ x^5*(34 + 80*x + 80*x^2 + 40*x^3 + 10*x^4 + 2*x^5)
+ x^6*(78 + 192*x + 252*x^2 + 164*x^3 + 66*x^4 + 12*x^5 + 4*x^6)
+ x^7*(130 + 448*x + 672*x^2 + 560*x^3 + 280*x^4 + 84*x^5 + 14*x^6 + 2*x^7)
+ x^8*(278 + 1024*x + 1824*x^2 + 1792*x^3 + 1148*x^4 + 448*x^5 + 120*x^6 + 16*x^7 + 4*x^8)
+ x^9*(522 + 2304*x + 4608*x^2 + 5388*x^3 + 4032*x^4 + 2016*x^5 + 678*x^6 + 144*x^7 + 18*x^8 + 3*x^9) +...
-
a[n_] := SeriesCoefficient[Sum[(x^k*(2+x^k))/(1-2*x^k-x^(2*k)), {k, 1, n}], {x, 0, n}]; Array[a, 40] (* Jean-François Alcover, Dec 19 2015 *)
-
{Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
{a(n)=polcoeff(sum(m=1, n, Pell(m+1)*x^m/(1-x^m +x*O(x^n))), n)}
for(n=1, 40, print1(a(n), ", "))
-
{a(n)=polcoeff(sum(m=1, n, x^m*(2+x^m)/(1-2*x^m-x^(2*m) +x*O(x^n)) ), n)}
for(n=1, 40, print1(a(n), ", "))
-
{a(n)=local(A=x+x^2); A=sum(m=1, n, x^m*sumdiv(m, d, (2 + x^(m/d) +x*O(x^n))^d) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments